StatsFit | R Documentation |
Apply latent or observed models to fit data (e.g., SEM, CFA, mediation)
StatsFit( latent = NULL, latent.names = NULL, observed = NULL, observed.names = NULL, additional = NULL, additional.names = NULL, DF, params = NULL, job.group = NULL, initial.list = list(), model.name, jags.model, custom.model = NULL, run.ppp = FALSE, run.robust = FALSE, ... )
latent |
latenr variables, Default: NULL |
latent.names |
optional names for for latent variables, Default: NULL |
observed |
observed variable(s), Default: NULL |
observed.names |
optional names for for observed variable(s), Default: NULL |
additional |
supplemental parameters for fitted data (e.g., indirect pathways and total effect), Default: NULL |
additional.names |
optional names for supplemental parameters, Default: NULL |
DF |
data to analyze |
params |
define parameters to observe, Default: NULL |
job.group |
for some hierarchical models with several layers of parameter names (e.g., latent and observed parameters), Default: NULL |
initial.list |
initial values for analysis, Default: list() |
model.name |
name of model used |
jags.model |
specify which module to use |
custom.model |
define a custom model to use (e.g., string or text file (.txt), Default: NULL |
run.ppp |
logical, indicating whether or not to conduct ppp analysis, Default: FALSE |
run.robust |
logical, indicating whether or not robust analysis, Default: FALSE |
... |
further arguments passed to or from other methods |
complete.cases
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.