View source: R/stats_covariate.R
StatsCovariate | R Documentation |
Covariate estimations (including correlation and Cronbach's alpha)
StatsCovariate( y = NULL, y.names = NULL, x = NULL, x.names = NULL, DF, params = NULL, job.group = NULL, initial.list = list(), jags.model, ... )
y |
criterion variable(s), Default: NULL |
y.names |
optional names for criterion variable(s), Default: NULL |
x |
predictor variable(s), Default: NULL |
x.names |
optional names for predictor variable(s), Default: NULL |
DF |
data to analyze |
params |
define parameters to observe, Default: NULL |
job.group |
for some hierarchical models with several layers of parameter names (e.g., latent and observed parameters), Default: NULL |
initial.list |
initial values for analysis, Default: list() |
jags.model |
specify which module to use |
... |
further arguments passed to or from other methods |
covariate, correlation and (optional) Cronbach's alpha
complete.cases
## Create normal distributed data with mean = 0 and standard deviation = 1 ### r = 0.5 #data <- MASS::mvrnorm(n=100, # mu=c(0, 0), # Sigma=matrix(c(1, 0.5, 0.5, 1), 2), # empirical=TRUE) ## Add names #colnames(data) <- c("X","Y") ## Create noise with mean = 10 / -10 and sd = 1 ### r = -1.0 #noise <- MASS::mvrnorm(n=2, # mu=c(10, -10), # Sigma=matrix(c(1, -1, -1, 1), 2), # empirical=TRUE) ## Combine noise and data #biased.data <- rbind(data,noise) # # ## Run analysis on normal distributed data #mcmc <- bfw(project.data = data, # y = "X,Y", # saved.steps = 50000, # jags.model = "covariate", # jags.seed = 100, # silent = TRUE) ## Run robust analysis on normal distributed data #mcmc.robust <- bfw(project.data = data, # y = "X,Y", # saved.steps = 50000, # jags.model = "covariate", # run.robust = TRUE, # jags.seed = 101, # silent = TRUE) ## Run analysis on data with outliers #biased.mcmc <- bfw(project.data = biased.data, # y = "X,Y", # saved.steps = 50000, # jags.model = "covariate", # jags.seed = 102, # silent = TRUE) ## Run robust analysis on data with outliers #biased.mcmc.robust <- bfw(project.data = biased.data, # y = "X,Y", # saved.steps = 50000, # jags.model = "covariate", # run.robust = TRUE, # jags.seed = 103, # silent = TRUE) ## Print frequentist results #stats::cor(data)[2] ## [1] 0.5 #stats::cor(noise)[2] ## [1] -1 #stats::cor(biased.data)[2] ## [1] -0.498 ## Print Bayesian results #mcmc$summary.MCMC ## Mean Median Mode ESS HDIlo HDIhi n ## cor[1,1]: X vs. X 1.000 1.000 0.999 0 1.000 1.000 100 ## cor[2,1]: Y vs. X 0.488 0.491 0.496 19411 0.337 0.633 100 ## cor[1,2]: X vs. Y 0.488 0.491 0.496 19411 0.337 0.633 100 ## cor[2,2]: Y vs. Y 1.000 1.000 0.999 0 1.000 1.000 100 #mcmc.robust$summary.MCMC ## Mean Median Mode ESS HDIlo HDIhi n ## cor[1,1]: X vs. X 1.00 1.000 0.999 0 1.000 1.000 100 ## cor[2,1]: Y vs. X 0.47 0.474 0.491 18626 0.311 0.626 100 ## cor[1,2]: X vs. Y 0.47 0.474 0.491 18626 0.311 0.626 100 ## cor[2,2]: Y vs. Y 1.00 1.000 0.999 0 1.000 1.000 100 #biased.mcmc$summary.MCMC ## Mean Median Mode ESS HDIlo HDIhi n ## cor[1,1]: X vs. X 1.000 1.000 0.999 0 1.000 1.000 102 ## cor[2,1]: Y vs. X -0.486 -0.489 -0.505 19340 -0.627 -0.335 102 ## cor[1,2]: X vs. Y -0.486 -0.489 -0.505 19340 -0.627 -0.335 102 ## cor[2,2]: Y vs. Y 1.000 1.000 0.999 0 1.000 1.000 102 #biased.mcmc.robust$summary.MCMC ## Mean Median Mode ESS HDIlo HDIhi n ## cor[1,1]: X vs. X 1.000 1.000 0.999 0 1.000 1.000 102 ## cor[2,1]: Y vs. X 0.338 0.343 0.356 23450 0.125 0.538 102 ## cor[1,2]: X vs. Y 0.338 0.343 0.356 23450 0.125 0.538 102
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.