| bglm | R Documentation | 
Function to carry out generalized linear regression on a data_frame data object
bglm(
  formula,
  family = gaussian_(),
  data,
  weights = NULL,
  offset = NULL,
  start = NULL,
  control = list(),
  etastart = NULL,
  mustart = NULL
)
| formula | formula that defines your regression model | 
| family | family object from activeReg, e.g. .gaussian(), .binomial(), .poisson(), .quasipoisson(), .quasibinomial(), .Gamma(), .inverse.gaussian(), .quasi() | 
| data | data_frame object containing data for linear regression | 
| weights | weights for the model | 
| offset | offsets for the model | 
| start | starting values for the linear predictor | 
| control | list of parameters for .control() function | 
| etastart | starting values for the linear predictor | 
| mustart | starting values for vector of means | 
require(parallel)
data("plasma", package = "bigReg")
data_dir = tempdir()
plasma1 <- plasma
plasma1 <- data_frame(plasma1, 10, path = data_dir, nCores = 1)
plasma_glm <- bglm(ESR ~ fibrinogen + globulin, data = plasma1, family = binomial_("logit"))
summary(plasma_glm)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.