Nothing
test_that("computing the lower bound works", {
set.seed(12345)
####################
# Setup
####################
# Number of nodes
N <- 8
# Number of clusters
K <- 3
# Create an adjacency matrix
edgelist <-
tibble::tibble(
tail = 1:N,
head = 1:N
) %>%
tidyr::expand(tail, head) %>%
dplyr::filter(tail < head) %>%
dplyr::mutate(connect = as.integer(unlist(rbinom(n = nrow(.), prob = 0.5, size = 1)))) %>%
dplyr::filter(connect == 1)
net <- network::network(edgelist, matrix.type = "edgelist", directed = FALSE)
adj <- network::as.matrix.network.adjacency(net)
adj <- as(adj, "dMatrix")
# Create feature matrices
x <- as.integer(unlist(rbinom(n = N,size = 1,prob = 0.5)))
S <- Matrix::sparseMatrix(i = {}, j = {}, dims = c(N, N))
S <- as(S, "dMatrix")
for (i in 1:N) {
for (j in 1:N) {
if (i != j) {
s_ij <- ifelse(x[i] == x[j], 1, 0)
S[i, j] <- s_ij
}
}
}
y <- as.integer(unlist(rbinom(size = 1,prob = 0.5,n = N)))
V <- Matrix::sparseMatrix(i = {}, j = {}, dims = c(N, N))
V <- as(V, "dgCMatrix")
for (i in 1:N) {
for (j in 1:N) {
if (i != j) {
v_ij <- ifelse(y[i] == y[j], 1, 0)
V[i, j] <- v_ij
}
}
}
z <- as.integer(unlist(rbinom(size = 1,prob = 0.5,n = N)))
W <- Matrix::sparseMatrix(i = {}, j = {}, dims = c(N, N))
W <- as(W, "dgCMatrix")
for (i in 1:N) {
for (j in 1:N) {
if (i != j) {
w_ij <- ifelse(z[i] == z[j], 1, 0)
W[i, j] <- w_ij
}
}
}
# Create a N x K matrix whose (i, k) element represents the probability that node i belongs to block k.
tau <-
matrix(c(
0.2, 0.5, 0.3,
0.4, 0.4, 0.2,
0.1, 0.4, 0.5,
0.4, 0.4, 0.2,
0.1, 0.1, 0.8,
0.05, 0.05, 0.9,
0.1, 0.1, 0.8,
0.05, 0.05, 0.9
),
nrow = K, ncol = N
)
tau <- t(tau)
# Compute gamma (parameter of multinomial distribution)
alpha <- colMeans(tau)
###########################################################
# Compute the lower bound in a naive way
###########################################################
# Compute pi for D_ij = 1
minPi <- 1e-4
list_pi <- list()
for (w in 0:1) {
for (v in 0:1) {
for (s in 0:1) {
print(glue::glue("Compute pi for pi_s{s}v{v}w{w}"))
denom <- matrix(0, nrow = K, ncol = K)
num <- matrix(0, nrow = K, ncol = K)
index <- s + 2 * v + 4 * w + 1
print(index)
for (k in 1:K) {
for (l in 1:K) {
for (i in 1:N) {
for (j in 1:N) {
if (i != j & S[i, j] == s & V[i, j] == v & W[i, j] == w) {
denom[k, l] <- denom[k, l] + tau[i, k] * tau[j, l]
}
if (i != j & adj[i, j] == 1 & S[i, j] == s & V[i, j] == v & W[i, j] == w) {
num[k, l] <- num[k, l] + tau[i, k] * tau[j, l]
}
}
}
}
}
pi <- num / denom
# Remove extremely small elements in pi
for (k in 1:K) {
for (l in 1:K) {
if (pi[k, l] < minPi) {
pi[k, l] <- minPi
}
}
}
list_pi[[index]] <- pi
}
}
}
# Compute the true lower bound
LB_true <- 0
# First term
for (i in 1:(N-1)) {
for (j in (i+1):N) {
if (i != j) {
# For each ij, determine which pi must be used.
index_ij <- S[i, j] + 2 * V[i, j] + 4 * W[i, j] + 1
pi_ij <- list_pi[[index_ij]]
# if D_ij = 0, replace pi with 1 - pi.
if (adj[i, j] == 0) {
pi_ij <- 1 - pi_ij
}
for (k in 1:K) {
for (l in 1:K) {
LB_true <- LB_true + tau[i, k] * tau[j, l] * log(pi_ij[k, l])
}
}
}
}
}
# Second term
for (i in 1:N) {
for (k in 1:K) {
LB_true <- LB_true + tau[i, k] * (log(alpha[k]) - log(tau[i, k]))
}
}
###########################################################
# Compute the lower bound using the cpp function
###########################################################
list_feature_adjmat <- list(S, V, W)
list_multiplied_feature_adjmat <- get_elementwise_multiplied_matrices_R(adj, list_feature_adjmat)
denom <- get_matrix_for_denominator_R(N, list_feature_adjmat)
list_multiplied_feature_adjmat[[1]] <- denom
list_multiplied_feature_adjmat <- lapply(list_multiplied_feature_adjmat, FUN = function(x) x*1)
alpha_LB <- run_MM_with_features(N, K, alpha,
list_multiplied_feature_adjmat, tau, verbose = 2)
# Check if it works
expect_equal(alpha_LB[[2]], LB_true, tolerance = 1e-10)
})
test_that("computing the lower bound without features works", {
####################
# Setup
####################
# Number of nodes
N <- 12
# Number of clusters
K <- 3
# Create an adjacency matrix
edgelist <-
tibble::tibble(
tail = 1:N,
head = 1:N
) %>%
tidyr::expand(tail, head) %>%
dplyr::filter(tail < head) %>%
dplyr::mutate(connect = as.integer(unlist(rbinom(size = 1,prob = 0.5,n = nrow(.))))) %>%
dplyr::filter(connect == 1)
net <- network::network(edgelist, matrix.type = "edgelist", directed = FALSE)
adj <- network::as.matrix.network.adjacency(net)
adj <- as(adj, "dgCMatrix")
# Create a N x K matrix whose (i, k) element represents the probability that node i belongs to block k.
tau <-
matrix(c(
0.2, 0.5, 0.3,
0.4, 0.4, 0.2,
0.1, 0.4, 0.5,
0.4, 0.4, 0.2,
0.1, 0.1, 0.8,
0.05, 0.05, 0.9,
0.8, 0.1, 0.1,
0.3, 0.4, 0.3,
0.1, 0.8, 0.1,
0.5, 0.4, 0.1,
0.3, 0.3, 0.4,
0.8, 0.1, 0.1
),
nrow = K, ncol = N
)
tau <- t(tau)
# Compute gamma (parameter of multinomial distribution)
alpha <- colMeans(tau)
###########################################################
# Compute the lower bound in a naive way
###########################################################
# Compute pi for D_ij = 1
minPi <- 1e-4
denom <- matrix(0, nrow = K, ncol = K)
num <- matrix(0, nrow = K, ncol = K)
for (k in 1:K) {
for (l in 1:K) {
for (i in 1:N) {
for (j in 1:N) {
if (i != j) {
denom[k, l] <- denom[k, l] + tau[i, k] * tau[j, l]
if (i != j & adj[i, j] == 1) {
num[k, l] <- num[k, l] + tau[i, k] * tau[j, l]
}
}
}
}
}
}
pi <- num / denom
# Remove extremely small elements in pi
for (k in 1:K) {
for (l in 1:K) {
if (pi[k, l] < minPi) {
pi[k, l] <- minPi
}
}
}
# Compute the true lower bound
LB_true <- 0
# First term
for (i in 1:(N-1)) {
for (j in (i+1):N) {
if (i != j) {
# if D_ij = 0, replace pi with 1 - pi.
if (adj[i, j] == 0) {
pi_ij <- 1 - pi
} else {
pi_ij <- pi
}
for (k in 1:K) {
for (l in 1:K) {
LB_true <- LB_true + tau[i, k] * tau[j, l] * log(pi_ij[k, l])
}
}
}
}
}
# Second term
for (i in 1:N) {
for (k in 1:K) {
LB_true <- LB_true + tau[i, k] * (log(alpha[k]) - log(tau[i, k]))
}
}
###########################################################
# Compute the lower bound using the cpp function
###########################################################
alpha_LB <- run_MM_without_features(numOfVertices = N, numOfClasses = K,
alpha = alpha, tau = tau, network = adj)
# Check if it works
expect_equal(alpha_LB[[2]], LB_true, tolerance = 1e-10)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.