Nothing
test_that("computing pi_d1x0 works", {
# Number of nodes
N <- 12
# Number of clusters
K <- 3
# Create an adjacency matrix
edgelist <-
tibble::tibble(
tail = 1:N,
head = 1:N
) %>%
tidyr::expand(tail, head) %>%
dplyr::filter(tail < head) %>%
dplyr::mutate(connect = rep(0:1, nrow(.) / 2)) %>%
dplyr::filter(connect == 1)
net <- network::network(edgelist, matrix.type = "edgelist", directed = FALSE)
adj <- network::as.matrix.network.adjacency(net)
adj <- as(adj, "dgCMatrix")
# Create feature matrices
x <- as.integer(unlist(rbinom(size = 1,prob = 0.5,n = N)))
S <- Matrix::sparseMatrix(i = {}, j = {}, dims = c(N, N))
S <- as(S, "dgCMatrix")
for (i in 1:N) {
for (j in 1:N) {
if (i != j) {
s_ij <- ifelse(x[i] == x[j], 1, 0)
S[i, j] <- s_ij
}
}
}
y <- as.integer(unlist(rbinom(size = 1,prob = 0.5,n = N)))
V <- Matrix::sparseMatrix(i = {}, j = {}, dims = c(N, N))
V <- as(V, "dgCMatrix")
for (i in 1:N) {
for (j in 1:N) {
if (i != j) {
v_ij <- ifelse(y[i] == y[j], 1, 0)
V[i, j] <- v_ij
}
}
}
z <- as.integer(unlist(rbinom(size = 1,prob = 0.5,n = N)))
W <- Matrix::sparseMatrix(i = {}, j = {}, dims = c(N, N))
W <- as(W, "dgCMatrix")
for (i in 1:N) {
for (j in 1:N) {
if (i != j) {
w_ij <- ifelse(z[i] == z[j], 1, 0)
W[i, j] <- w_ij
}
}
}
# Create a N x K matrix whose (i, k) element represents the probability that node i belongs to block k.
tau <-
matrix(c(
0.2, 0.5, 0.3,
0.4, 0.4, 0.2,
0.1, 0.4, 0.5,
0.4, 0.4, 0.2,
0.1, 0.1, 0.8,
0.05, 0.05, 0.9,
0.8, 0.1, 0.1,
0.3, 0.4, 0.3,
0.1, 0.8, 0.1,
0.5, 0.4, 0.1,
0.3, 0.3, 0.4,
0.8, 0.1, 0.1
),
nrow = K, ncol = N
)
tau <- t(tau)
# Compute the true denominator
one <- matrix(1, nrow = N, ncol = N)
mat <- (one - S) * (one - V) * (one - W)
diag(mat) <- 0
denom_for_pi0_true <- t(tau) %*% mat %*% tau
denom_for_pi0_true <- as.matrix(denom_for_pi0_true)
# Compute the true denominator in a naive way
denom_for_pi0_naive <- matrix(0, nrow = K, ncol = K)
for (k in 1:K) {
for (l in 1:K) {
for (i in 1:N) {
for (j in 1:N) {
if (i != j & S[i, j] == 0 & V[i, j] == 0 & W[i, j] == 0) {
denom_for_pi0_naive[k, l] <- denom_for_pi0_naive[k, l] + tau[i, k] * tau[j, l]
}
}
}
}
}
# Check if they are the same. This verifies that the formula is correct.
expect_equal(denom_for_pi0_true, denom_for_pi0_naive, check.attributes = FALSE, tolerance = 1e-10)
# Compute the denominator using the c++ function
denom <- get_matrix_for_denominator_R(N, list(S, V, W))
denom_for_pi0 <- compute_denominator_for_pi_d1x0(N, K, denom, tau, verbose = 0)
# Check if the computed matrix is correct.
expect_equal(denom_for_pi0, denom_for_pi0_naive, check.attributes = FALSE, tolerance = 1e-10)
# Compute true pi1 in a naive way
pi1 <- matrix(0, nrow = K, ncol = K)
for (k in 1:K) {
for (l in 1:K) {
for (i in 1:N) {
for (j in 1:N) {
if (i != j & adj[i, j] == 1 & S[i, j] == 0 & V[i, j] == 0 & W[i, j] == 0) {
pi1[k, l] <- pi1[k, l] + tau[i, k] * tau[j, l]
}
}
}
}
}
pi1_true <- pi1 / denom_for_pi0_naive
# Remove extremely small values in pi1
minPi <- 1e-4
for (k in 1:K) {
for (l in 1:K) {
if (pi1_true[k, l] < minPi) {
pi1_true[k, l] <- minPi
}
}
}
# Compute pi0 using the Rcpp function
list_multiplied_adjmat <- get_elementwise_multiplied_matrices_R(adj, list(S, V, W))
list_multiplied_adjmat[[1]] <- denom
list_multiplied_adjmat <- lapply(list_multiplied_adjmat, FUN = function(x) x*1)
pi1 <- compute_pi_d1x0(N, K, list_multiplied_adjmat, tau, verbose = 0)
# Check if the computed conditional probability is correct.
expect_equal(pi1, pi1_true, check.attributes = FALSE, tolerance = 1e-10)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.