Description Usage Arguments Details Value Author(s) References Examples
For a given true value of the proportion compute the coverage probability of the confidence interval
1 2 3 4 |
ci.fun |
|
n |
Sample size of the binomial distribution. |
alpha |
Level of significance, 1-α is the confidence level. |
p.grid |
Vector of proportions where to evaluate the confidence
interval function. If |
interval |
Vector of length two specifying lower and upper border of an interval of interest for the proportion. The intersection of the above grid and this interval is taken. |
pmfX |
A function based on the arguments |
x |
An object of class |
y |
Not used |
... |
Further arguments to be sent to |
Compute coverage probabilities for each proportion in
p.grid
. See actual function code for the exact details, which
p.grid
is actually chosen.
An object of class coverage
containing coverage probabilities,
coverage coefficient and more.
M. H<f6>hle
Agresti, A. and Coull, B.A. (1998), Approximate is Better than "Exact" for Interval Estimation of Binomial Proportions, The American Statistician, 52(2):119-126.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | #Show coverage of Liu & Bailey interval
cov <- coverage( binom.liubailey, n=100, alpha=0.05,
p.grid=seq(0,1,length=1000), interval=c(0,1), lambda=0, d=0.1)
plot(cov, type="l")
#Now for some more advanced stuff. Investigate coverage of pooled
#sample size estimators
kk <- 10
nn <- 20
ci.funs <- list(poolbinom.wald, poolbinom.logit, poolbinom.lrt)
covs <- lapply( ci.funs, function(f) {
coverage( f, n=nn, k=kk, alpha=0.05, p.grid=seq(0,1,length=100),
pmfX=function(k,n,p) dbinom(k,size=n, p=1-(1-p)^kk))
})
par(mfrow=c(3,1))
plot(covs[[1]],type="l",main="Wald",ylim=c(0.8,1))
lines(c(0,1),rep(0.95,2),lty=2,col=2)
plot(covs[[2]],type="l",main="Logit")#,ylim=c(0.8,1))
lines(c(0,1),rep(0.95,2),lty=2,col=2)
plot(covs[[3]],type="l",main="LRT",ylim=c(0.8,1))
lines(c(0,1),rep(0.95,2),lty=2,col=2)
poolbinom.wald(x=1,n=nn,k=kk)
poolbinom.logit(x=1,n=nn,k=kk)
poolbinom.lrt(x=1,n=nn,k=kk)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.