Nothing
ipdnma.onestage.rjags <- function(ipd){
with(ipd, {
code <- paste0("\n########## IPD-NMA model",
"\nfor (i in 1:Np) {")
if(response == "binomial"){
code <- paste0(code, "\n\ty[i] ~ dbern(p[i])",
"\n\tlogit(p[i]) <- alpha[studyid[i]] + inprod(beta[], X[i,]) +",
"\n\t\tinprod(gamma[treat[i],], X[i,]) +")
} else if(response == "normal"){
code <- paste0(code, "\n\ty[i] ~ dnorm(mu[i], sigma)",
"\n\tmu[i] <- alpha[studyid[i]] + inprod(beta[], X[i,]) +",
"\n\t\tinprod(gamma[treat[i],], X[i,]) +")
}
if(type == "random"){
code <- paste0(code, " d[studyid[i],treatment.arm[i]]",
"\n}")
} else if (type == "fixed"){
code <- paste0(code, " delta[treat[i]]",
"\n}")
}
if(response == "normal"){
code <- paste0(code, "\nsigma ~ dgamma(0.001, 0.001)")
}
if(type == "random"){
code <- paste0(code, "\n\n#####treatment effect",
"\nfor(i in 1:Nstudies){",
"\n\tw[i,1] <- 0",
"\n\td[i,1] <- 0",
"\n\tfor(k in 2:na[i]){",
"\n\t\td[i,k] ~ dnorm(mdelta[i,k], taudelta[i,k])",
"\n\t\tmdelta[i,k] <- delta[t[i,k]] - delta[t[i,1]] + sw[i,k]",
"\n\t\ttaudelta[i,k] <- tau * 2 * (k-1)/k",
"\n\t\tw[i,k] <- d[i,k] - delta[t[i,k]] + delta[t[i,1]]",
"\n\t\tsw[i,k] <- sum(w[i, 1:(k-1)]) / (k-1)",
"\n\t}",
"\n}")
code <- paste0(code, hy.prior.rjags(ipd))
}
code <- paste0(code, "\n\n## prior distribution for the average treatment effect",
"\ndelta[1] <- 0",
"\nfor(k in 2:Ntreat){",
"\n\tdelta[k] ~ dnorm(", mean.delta, ", ", prec.delta, ")",
"\n}")
code <- paste0(code, "\n\n## prior distribution for the study intercept",
"\nfor (j in 1:Nstudies){",
"\n\talpha[j] ~ dnorm(", mean.alpha, ", ", prec.alpha, ")",
"\n}")
code <- paste0(code, "\n\n## prior distribution for the main effect of the covariates",
"\nfor(k in 1:Ncovariate){",
"\n\tbeta[k] ~ dnorm(", mean.beta, ", ", prec.beta, ")",
"\n}")
code <- paste0(code, nma.shrinkage.prior.rjags(ipd))
code <- paste0("model {\n", code, "\n}")
return(code)
})
}
nma.shrinkage.prior.rjags <- function(ipd){
code <- ""
with(ipd, {
if(shrinkage == "none"){
code <- paste0(code, "\n## prior distribution for the effect modifiers under no shrinkage",
"\nfor(k in 1:Ncovariate){",
"\n\tgamma[1,k] <- 0",
"\n\tfor(m in 2:Ntreat){",
"\n\t\tgamma[m,k] ~ dnorm(", mean.gamma, ", ", prec.gamma, ") ",
"\n\t}",
"\n}")
} else if(shrinkage == "laplace"){
code <- paste0(code, "\n## prior distribution for the effect modifiers under laplacian shrinkage")
if(lambda.prior[[1]] == "dgamma"){
if(response == "normal"){
code <- paste0(code,
"\nlambda[1] <- 0",
"\nfor(m in 2:Ntreat){",
"\n\ttt[m] <- lambda[m] * sigma",
"\n\tlambda[m] ~ dgamma(", lambda.prior[[2]], ", ", lambda.prior[[3]], ")",
"\n}"
)
} else if(response == "binomial"){
code <- paste0(code,
"\nlambda[1] <- 0",
"\nfor(m in 2:Ntreat){",
"\n\ttt[m] <- lambda[m]",
"\n\tlambda[m] ~ dgamma(", lambda.prior[[2]], ", ", lambda.prior[[3]], ")",
"\n}"
)
}
code <- paste0(code,
"\nfor(k in 1:Ncovariate){",
"\n\tgamma[1,k] <- 0",
"\n\tfor(m in 2:Ntreat){",
"\n\t\tgamma[m,k] ~ ddexp(0, tt[m])",
"\n\t}",
"\n}")
} else if (lambda.prior[[1]] == "dunif"){
if(response == "normal"){
code <- paste0(code,
"\nlambda[1] <- 0",
"\nlambda.inv[1] <- 0",
"\nfor(m in 2:Ntreat){",
"\n\ttt[m] <- lambda[m] * sigma",
"\n\tlambda[m] <- pow(lambda.inv[m], -1)",
"\n\tlambda.inv[m] ~ dunif(", lambda.prior[[2]], ", ", lambda.prior[[3]], ")",
"\n}")
} else if(response == "binomial"){
code <- paste0(code,
"\nlambda[1] <- 0",
"\nlambda.inv[1] <- 0",
"\nfor(m in 2:Ntreat){",
"\n\ttt[m] <- lambda[m]",
"\n\tlambda[m] <- pow(lambda.inv[m], -1)",
"\n\tlambda.inv[m] ~ dunif(", lambda.prior[[2]], ", ", lambda.prior[[3]], ")",
"\n}")
}
code <- paste0(code,
"\nfor(k in 1:Ncovariate){",
"\n\tgamma[1,k] <- 0",
"\n\tfor(m in 2:Ntreat){",
"\n\t\tgamma[m,k] ~ ddexp(0, tt[m])",
"\n\t}",
"\n}")
}
} else if (shrinkage == "SSVS"){
code <- paste0(code, "\n## prior distribution for the effect modifiers under SSVS",
"\nfor(k in 1:Ncovariate){",
"\n\tgamma[1,k] <- 0",
"\n\tfor(m in 2:Ntreat){",
"\n\t\tIndA[m,k] ~ dcat(Pind[,k])",
"\n\t\tInd[m,k] <- IndA[m,k] - 1",
"\n\t\tgamma[m,k] ~ dnorm(0, tauCov[IndA[m,k]])",
"\n\t}",
"\n}",
"\n",
"\nzeta <- pow(eta, -2)",
"\neta ~ dunif(", hy.prior.eta[[2]], ", ", hy.prior.eta[[3]], ")",
"\ntauCov[1] <- zeta * ", g, " # precision of spike",
"\ntauCov[2] <- zeta # precision of slab",
"\n\nfor(k in 1:Ncovariate){",
"\n\tPind[2,k] <- p.ind[k]",
"\n\tPind[1,k] <- 1- p.ind[k]",
"\n}"
)
}
return(code)
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.