Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(comment = "#>", message=FALSE, tidy.opts=list(width.cutoff=60), tidy=TRUE, collapse = TRUE, warning = FALSE)
## -----------------------------------------------------------------------------
#install.packages("bipd")
#or devtools::install_github("MikeJSeo/bipd")
library(bipd)
set.seed(1)
simulated_dataset <- generate_sysmiss_ipdma_example(Nstudies = 10, Ncov = 5, sys_missing_prob = 0.3, magnitude = 0.2, heterogeneity = 0.1)
head(simulated_dataset)
## -----------------------------------------------------------------------------
missP <- findMissingPattern(simulated_dataset, covariates = c("x1", "x2", "x3", "x4", "x5"), typeofvar = c("continuous", "binary", "binary", "continuous", "continuous"), studyname = "study", treatmentname = "treat", outcomename = "y")
## -----------------------------------------------------------------------------
missP$missingpercent
missP$sys_covariates
missP$spor_covariates
## -----------------------------------------------------------------------------
simulated_dataset2 <- simulated_dataset
randomindex <- sample(c(TRUE,FALSE), dim(simulated_dataset)[1], replace = TRUE, prob = c(0.1, 0.9))
simulated_dataset2[randomindex,"x1"] <- NA
missP2 <- findMissingPattern(simulated_dataset2, covariates = c("x1", "x2", "x3", "x4", "x5"), typeofvar = c("continuous", "binary", "binary", "continuous", "continuous"), studyname = "study", treatmentname = "treat", outcomename = "y")
missP2$missingpercent
missP2$sys_covariates
missP2$spor_covariates
## ---- warning = FALSE, message = FALSE, results = 'hide', comment = FALSE-----
library(mice) #for datasets with only one study level
library(miceadds) #for multilevel datasets without systematically missing predictors
library(micemd) #for multilevel datasets with systematically missing predictors.
## -----------------------------------------------------------------------------
imputation <- ipdma.impute(simulated_dataset, covariates = c("x1", "x2", "x3", "x4", "x5"), typeofvar = c("continuous", "binary", "binary", "continuous", "continuous"), interaction = TRUE, studyname = "study", treatmentname = "treat", outcomename = "y", m = 5)
## -----------------------------------------------------------------------------
imputation$meth
imputation$pred
## -----------------------------------------------------------------------------
ls(imputation)
## -----------------------------------------------------------------------------
length(imputation$imp.list)
## ---- warning = FALSE, message = FALSE, results = 'hide', comment = FALSE-----
imputation2 <- ipdma.impute(simulated_dataset2, covariates = c("x1", "x2", "x3", "x4", "x5"), typeofvar = c("continuous", "binary", "binary", "continuous", "continuous"), sys_impute_method = "2l.glm", interaction = FALSE, studyname = "study", treatmentname = "treat", outcomename = "y", m = 5)
## -----------------------------------------------------------------------------
imputation2$meth
imputation2$pred
## ---- warning = FALSE, message = FALSE, results = 'hide', comment = FALSE-----
meth <- imputation2$meth
meth["x1"] <- "2l.norm"
imputation2 <- ipdma.impute(simulated_dataset2, covariates = c("x1", "x2", "x3", "x4", "x5"), typeofvar = c("continuous", "binary", "binary", "continuous", "continuous"), sys_impute_method = "2l.glm", interaction = FALSE, studyname = "study", treatmentname = "treat", outcomename = "y", m = 5, meth = meth)
## ---- warning = FALSE, message = FALSE, results = 'hide', comment = FALSE-----
imputation2 <- ipdma.impute(simulated_dataset2, covariates = c("x1", "x2", "x3", "x4", "x5"), typeofvar = c("continuous", "binary", "binary", "continuous", "continuous"), sys_impute_method = "pmm", interaction = FALSE, studyname = "study", treatmentname = "treat", outcomename = "y", m = 5)
## -----------------------------------------------------------------------------
imputation2$meth
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.