Description Usage Arguments References Examples
Determine if two identically dimensioned sets of chains match. This is good for conducting sensitivity studies.
| 1 |   bmksensitive(inputlist1, inputlist2)
 | 
| inputlist1 | A list of the combined MCMC chains for all samples from one scenario. | 
| inputlist2 | A list of the combined MCMC chains for all samples from another scenario. | 
Boone EL, Merrick JR and Krachey MJ.  A Hellinger
distance approach to MCMC diagnostics.  Journal of
Statistical Computation and Simulation,
DOI:10.1080/00949655.2012.729588.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | data(MCMCsamples)
 bmksensitive(MCMC.one.mean0, MCMC.one.mean1)
 ## Not run: 
 library(dismo); library(MCMCpack)
 data(Anguilla_train)
 b0mean0 <- 0
 b0mean1 <- 1
 b0precision <- (1/5)^2
 mcmclen = 1000
 burn=10000
 MCMC.one.mean0 <- MCMClogit(Angaus ~ SegSumT+DSDist+USNative+as.factor(Method)+DSMaxSlope+USSlope,
                  data=Anguilla_train,burnin=burn, mcmc=mcmclen, beta.start=-1,
                  b0=b0mean0, B0=b0precision)
 MCMC.one.mean1 <- MCMClogit(Angaus ~ SegSumT+DSDist+USNative+as.factor(Method)+DSMaxSlope+USSlope,
                  data=Anguilla_train,burnin=burn, mcmc=mcmclen, beta.start=-.5,
                  b0=b0mean1, B0=b0precision)
 bmksensitive(one, two)
 
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.