Description Usage Arguments Details Value Author(s) References See Also Examples
Computes the p-values for all the entries in the matrix test.mat using the asymtotic properties of the estimator of the wavelet correlation given in (Whitcher, 2000). 
| 1 2 | p.value.compute(test.mat, var.ind.mat = 0, n.ind = 0, test.method = "gaussian",
                 proc.length, sup, num.levels, use.tanh = FALSE)
 | 
| test.mat | matrix containing the wavelet correlation to be tested | 
| var.ind.mat |  matrix containing the variance inter individuals of the correlation. Only used with  | 
| n.ind | number of individuals to take into account in the test. Only used with  | 
| test.method |  name of the method to be applied.  | 
| proc.length |  specifies the length of the original processes using to construct the  | 
| num.levels |  specifies the number of the wavelet scale to take into account in the hypothesis test. Only used with  | 
| use.tanh |  logical. If FALSE take the  | 
| sup | indicates the correlation threshold to consider in each hypothesis test. | 
Each hypothesis test is written as :
H_0 : "|correlation| <= sup"
H_1 : "|correlation| > sup"
This function is essentially an internal function called by const.adj.mat.
Vector with the p-value for each entry of the matrix.
S. Achard
S. Achard, R. Salvador, B. Whitcher, J. Suckling, Ed Bullmore (2006) A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs. Journal of Neuroscience, Vol. 26, N. 1, pages 63-72.
codeconst.adj.mat
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | data(brain)
brain<-as.matrix(brain)
# WARNING : To process only the first five regions
brain<-brain[,1:5]
# Construction of the correlation matrices for each level of the wavelet decomposition
wave.cor.list<-const.cor.list(brain, method = "modwt" ,wf = "la8", n.levels = 4, 
                               boundary = "periodic", p.corr = 0.975)
# For scale 4
pvalue.cor<-p.value.compute(wave.cor.list[[4]],proc.length=dim(brain)[1], sup=0.44, 
                            num.levels=4)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.