The breakpoint package implements variants of the Cross-Entropy (CE) method proposed in Priyadarshana and Sofronov (2015, 2012a and 2012b) to estimate both the number and the corresponding locations of break-points in biological sequences of continuous and discrete measurements. The proposed method primarily built to detect multiple break-points in genomic sequences. However, it can be easily extended and applied to other problems.

Package: | breakpoint |

Type: | Package |

Version: | 1.2 |

Date: | 2016-01-11 |

License: | GPL 2.0 |

"breakpoint"" package provides estimates on both the number as well as the corresponding locations of break-points. The algorithms utilize the Cross-Entropy (CE) method, which is a model-based stochastic optimization procedure to obtain the estimates on locations. Model selection procedures are used to obtain the number of break-points. Current implementation of the methodology works as an exact search method in estimating the number of break-points. However, it supports calculations if the initial locations are provided. A parallel implementation of the procedures can be carried-out in Unix/Linux/MAC OSX and WINDOWS OS with the use of "parallel" and "doParallel" packages.

Priyadarshana, W.J.R.M. and Sofronov, G.

Maintainer: Priyadarshana, W.J.R.M. <mjayawardana@swin.edu.au>

Priyadarshana, W. J. R. M., Sofronov G. (2015). Multiple Break-Points Detection in Array CGH Data via the Cross-Entropy Method, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 12 (2), pp.487-498.

Priyadarshana, W. J. R. M. and Sofronov, G. (2012a). A Modified Cross- Entropy Method for Detecting Multiple Change-Points in DNA Count Data. In Proc. of the IEEE Conference on Evolutionary Computation (CEC), 1020-1027, DOI: 10.1109/CEC.2012.6256470.

Priyadarshana, W. J. R. M. and Sofronov, G. (2012b). The Cross-Entropy Method and Multiple Change-Points Detection in Zero-Inflated DNA read count data. In: Y. T. Gu, S. C. Saha (Eds.) The 4th International Conference on Computational Methods (ICCM2012), 1-8, ISBN 978-1-921897-54-2.

Rubinstein, R., and Kroese, D. (2004) The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning. Springer-Verlag, New York.

Zhang, N.R., and Siegmund, D.O. (2007) A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data. Biometrics, 63, 22-32.

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

All documentation is copyright its authors; we didn't write any of that.