R/bridge_methods.R

Defines functions print.bridge_list print.bridge print.summary.bridge_list print.summary.bridge summary.bridge_list summary.bridge

Documented in print.bridge print.bridge_list print.summary.bridge print.summary.bridge_list summary.bridge summary.bridge_list

#' Methods for bridge and bridge_list objects
#'
#' Methods defined for objects returned from the generic \code{\link{bridge_sampler}} function.
#'
#' @param object,x object of class \code{bridge} or \code{bridge_list} as returned from \code{\link{bridge_sampler}}.
#' @param na.rm logical. Should NA estimates in \code{bridge_list} objects be removed? Passed to \code{\link{error_measures}}.
#' @param ... further arguments, currently ignored.
#'
#' @return
#' The \code{summary} methods return a \code{data.frame} which contains the log marginal likelihood plus the result returned from invoking \code{\link{error_measures}}.
#'
#' The \code{print} methods simply print and return nothing.
#'
#'
#' @name bridge-methods
NULL


# summary methods

#' @rdname bridge-methods
#' @method summary bridge
#' @export
summary.bridge <- function(object, na.rm = TRUE, ...) {
  if (!(object$method %in% c("normal", "warp3"))) {
    stop('object$method needs to be either "normal" or "warp3".', call. = FALSE)
  }

  if (object$method == "normal") {
    em <- error_measures(object)
    out <- data.frame(
      "Logml_Estimate" = object$logml,
      "Relative_Mean_Squared_Error" = em$re2,
      "Coefficient_of_Variation" = em$cv,
      "Percentage_Error" = em$percentage,
      "Method" = object$method,
      "Repetitions" = 1,
      stringsAsFactors = FALSE
    )
  } else if (object$method == "warp3") {
    out <- data.frame(
      "Logml_Estimate" = object$logml,
      "Method" = object$method,
      "Repetitions" = 1
    )
  }

  class(out) <- c("summary.bridge", "data.frame")
  return(out)
}

#' @rdname bridge-methods
#' @method summary bridge_list
#' @export
summary.bridge_list <- function(object, na.rm = TRUE, ...) {
  if (!(object$method %in% c("normal", "warp3"))) {
    stop('object$method needs to be either "normal" or "warp3".', call. = FALSE)
  }

  em <- error_measures(object, na.rm = na.rm)
  out <- data.frame(
    "Logml_Estimate" = median(object$logml, na.rm = na.rm),
    "Min" = em$min,
    "Max" = em$max,
    "Interquartile_Range" = em$IQR,
    "Method" = object$method,
    "Repetitions" = object$repetitions
  )

  class(out) <- c("summary.bridge_list", "data.frame")
  return(out)
}

# print summary methods

#' @rdname bridge-methods
#' @method print summary.bridge
#' @export
print.summary.bridge <- function(x, ...) {
  if (x[["Method"]] == "normal") {
    cat(
      '\nBridge sampling log marginal likelihood estimate \n(method = "',
      as.character(x[["Method"]]),
      '", repetitions = ',
      x[["Repetitions"]],
      '):\n\n ',
      x[["Logml_Estimate"]],
      '\n\nError Measures:\n\n Relative Mean-Squared Error: ',
      x[["Relative_Mean_Squared_Error"]],
      '\n Coefficient of Variation: ',
      x[["Coefficient_of_Variation"]],
      '\n Percentage Error: ',
      x[["Percentage_Error"]],
      '\n\nNote:\nAll error measures are approximate.\n\n',
      sep = ""
    )
  } else if (x[["Method"]] == "warp3") {
    cat(
      '\nBridge sampling log marginal likelihood estimate \n(method = "',
      as.character(x[["Method"]]),
      '", repetitions = ',
      x[["Repetitions"]],
      '):\n\n ',
      x[["Logml_Estimate"]],
      '\n\nNote:\nNo error measures are available for method = "warp3"',
      '\nwith repetitions = 1.',
      '\nWe recommend to run the warp3 procedure multiple times to',
      '\nassess the uncertainty of the estimate.\n\n',
      sep = ""
    )
  }
}

#' @rdname bridge-methods
#' @method print summary.bridge_list
#' @export
print.summary.bridge_list <- function(x, ...) {
  cat(
    '\nBridge sampling log marginal likelihood estimate \n(method = "',
    as.character(x[["Method"]]),
    '", repetitions = ',
    x[["Repetitions"]],
    '):\n\n ',
    x[["Logml_Estimate"]],
    '\n\nError Measures:\n\n Min: ',
    x[["Min"]],
    '\n Max: ',
    x[["Max"]],
    '\n Interquartile Range: ',
    x[["Interquartile_Range"]],
    '\n\nNote:\nAll error measures are based on ',
    x[["Repetitions"]],
    ' estimates.\n\n',
    sep = ""
  )
}

# print methods

#' @rdname bridge-methods
#' @method print bridge
#' @export
print.bridge <- function(x, ...) {
  cat(
    "Bridge sampling estimate of the log marginal likelihood: ",
    round(x$logml, 5),
    "\nEstimate obtained in ",
    x$niter,
    " iteration(s) via method \"",
    x$method,
    "\".\n",
    sep = ""
  )
}

#' @rdname bridge-methods
#' @method print bridge_list
#' @export
print.bridge_list <- function(x, na.rm = TRUE, ...) {
  cat(
    "Median of ",
    x$repetitions,
    " bridge sampling estimates\nof the log marginal likelihood: ",
    round(median(x$logml, na.rm = na.rm), 5),
    "\nRange of estimates: ",
    round(range(x$logml, na.rm = na.rm)[1], 5),
    " to ",
    round(range(x$logml, na.rm = na.rm)[2], 5),
    "\nInterquartile range: ",
    round(stats::IQR(x$logml, na.rm = na.rm), 5),
    "\nMethod: ",
    x$method,
    "\n",
    sep = ""
  )
  if (any(is.na(x$logml))) {
    warning(
      sum(is.na(x$logml)),
      " bridge sampling estimate(s) are NAs.",
      call. = FALSE
    )
  }
}

Try the bridgesampling package in your browser

Any scripts or data that you put into this service are public.

bridgesampling documentation built on Nov. 19, 2025, 9:07 a.m.