View source: R/brm_simulate_prior.R
brm_simulate_prior | R Documentation |
Simulate the outcome variable from the prior
predictive distribution of an MMRM using brms
.
brm_simulate_prior(
data,
formula,
prior = brms.mmrm::brm_prior_simple(data = data, formula = formula),
...
)
data |
A classed data frame from |
formula |
An object of class |
prior |
A valid |
... |
Named arguments to specific |
brm_simulate_prior()
calls brms::brm()
with
sample_prior = "only"
, which sets the default intercept prior
using the outcome variable and requires at least some elements of the
outcome variable to be non-missing in advance. So to provide feasible and
consistent output, brm_simulate_prior()
temporarily sets the
outcome variable to all zeros before invoking brms::brm()
.
A list with the following elements:
data
: a classed tibble
with the outcome variable simulated as a draw
from the prior predictive distribution (the final row of outcome
in
the output). If you simulated a missingness pattern
with brm_simulate_outline()
, then that missingness pattern is applied
so that the appropriate values of the outcome variable are set to NA
.
model
: the brms
model fit object.
model_matrix
: the model matrix of the fixed effects, obtained from
brms::make_standata()
.
outcome
: a numeric matrix with one column per row of data
and one
row per saved prior predictive draw.
parameters
: a tibble
of saved parameter draws from the prior
predictive distribution.
Other simulation:
brm_simulate_categorical()
,
brm_simulate_continuous()
,
brm_simulate_outline()
,
brm_simulate_simple()
if (identical(Sys.getenv("BRM_EXAMPLES", unset = ""), "true")) {
set.seed(0L)
data <- brm_simulate_outline()
data <- brm_simulate_continuous(data, names = c("age", "biomarker"))
data$response <- rnorm(nrow(data))
formula <- brm_formula(
data = data,
baseline = FALSE,
baseline_time = FALSE
)
tmp <- utils::capture.output(
suppressMessages(
suppressWarnings(
out <- brm_simulate_prior(
data = data,
formula = formula
)
)
)
)
out$data
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.