View source: R/brm_archetype.R
summary.brms_mmrm_archetype | R Documentation |
For an informative prior archetype, show the transformation from model parameters to marginal means.
## S3 method for class 'brms_mmrm_archetype'
summary(object, message = TRUE, ...)
object |
The informative prior archetype to summarize. |
message |
TRUE to print an informative message about the archetype
and invisibly return a character vector of equations. |
... |
Not used, but required for S3 methods that inherit from
the base generic |
Return a character vector with linear equations
that map model parameters to marginal means. If the message
argument is TRUE
(default) then this character vector is returned
invisibly and a verbose description of the equations is printed.
data <- brm_simulate_outline(
n_group = 2,
n_patient = 100,
n_time = 4,
rate_dropout = 0,
rate_lapse = 0
) |>
dplyr::mutate(response = rnorm(n = dplyr::n())) |>
brm_data_change() |>
brm_simulate_continuous(names = c("biomarker1", "biomarker2")) |>
brm_simulate_categorical(
names = c("status1", "status2"),
levels = c("present", "absent")
)
dplyr::select(
data,
group,
time,
patient,
starts_with("biomarker"),
starts_with("status")
)
archetype <- brm_archetype_successive_cells(data)
equations <- summary(archetype)
print(equations)
summary(archetype, message = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.