View source: R/brm_simulate_simple.R
| brm_simulate_simple | R Documentation |
Simple function to simulate a dataset from a simple specialized MMRM.
brm_simulate_simple(
n_group = 2L,
n_patient = 100L,
n_time = 4L,
hyper_beta = 1,
hyper_tau = 0.1,
hyper_lambda = 1
)
n_group |
Positive integer of length 1, number of treatment groups. |
n_patient |
Positive integer of length 1, number of patients per treatment group. |
n_time |
Positive integer of length 1, number of discrete time points (e.g. scheduled study visits) per patient. |
hyper_beta |
Positive numeric of length 1, hyperparameter.
Prior standard deviation of the fixed effect parameters |
hyper_tau |
Positive numeric of length 1, hyperparameter.
Prior standard deviation parameter of the residual log standard
deviation parameters |
hyper_lambda |
Positive numeric of length 1, hyperparameter. Prior shape parameter of the LKJ correlation matrix of the residuals among discrete time points. |
Refer to the methods vignette for a full model specification.
The brm_simulate_simple() function simulates a dataset from a
simple pre-defined MMRM. It assumes a cell means structure for fixed
effects, which means there is one fixed effect scalar parameter
(element of vector beta) for each unique combination of levels of
treatment group and discrete time point.
The elements of beta have independent univariate normal
priors with mean 0 and standard deviation hyper_beta.
The residual log standard deviation parameters (elements of vector tau)
have normal priors with mean 0 and standard deviation hyper_tau.
The residual correlation matrix parameter lambda has an LKJ correlation
prior with shape parameter hyper_lambda.
A list of three objects:
data: A tidy dataset with one row per patient per discrete
time point and columns for the outcome and ID variables.
model_matrix: A matrix with one row per row of data and columns
that represent levels of the covariates.
parameters: A named list of parameter draws sampled from the prior:
beta: numeric vector of fixed effects.
tau: numeric vector of residual log standard parameters for each
time point.
sigma: numeric vector of residual standard parameters for each
time point. sigma is equal to exp(tau).
lambda: correlation matrix of the residuals among the time points
within each patient.
covariance: covariance matrix of the residuals among the time points
within each patient. covariance is equal to
diag(sigma) %*% lambda %*% diag(sigma).
Other simulation:
brm_simulate_categorical(),
brm_simulate_continuous(),
brm_simulate_outline(),
brm_simulate_prior()
set.seed(0L)
simulation <- brm_simulate_simple()
simulation$data
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.