brnn | R Documentation |
The brnn function fits a two layer neural network as described in MacKay (1992) and Foresee and Hagan (1997). It uses the Nguyen and Widrow algorithm (1990) to assign initial weights and the Gauss-Newton algorithm to perform the optimization. This function implements the functionality of the function trainbr in Matlab 2010b.
brnn(x, ...)
## S3 method for class 'formula'
brnn(formula, data, contrasts=NULL,...)
## Default S3 method:
brnn(x,y,neurons=2,normalize=TRUE,epochs=1000,mu=0.005,mu_dec=0.1,
mu_inc=10,mu_max=1e10,min_grad=1e-10,change = 0.001,cores=1,
verbose=FALSE,Monte_Carlo = FALSE,tol = 1e-06, samples = 40,...)
formula |
A formula of the form |
data |
Data frame from which variables specified in |
x |
(numeric, |
y |
(numeric, |
neurons |
positive integer that indicates the number of neurons. |
normalize |
logical, if TRUE will normalize inputs and output, the default value is TRUE. |
epochs |
positive integer, maximum number of epochs(iterations) to train, default 1000. |
mu |
positive number that controls the behaviour of the Gauss-Newton optimization algorithm, default value 0.005. |
mu_dec |
positive number, is the mu decrease ratio, default value 0.1. |
mu_inc |
positive number, is the mu increase ratio, default value 10. |
mu_max |
maximum mu before training is stopped, strict positive number, default value |
min_grad |
minimum gradient. |
change |
The program will stop if the maximum (in absolute value) of the differences of the F function in 3 consecutive iterations is less than this quantity. |
cores |
Number of cpu cores to use for calculations (only available in UNIX-like operating systems). The function detectCores in the R package parallel can be used to attempt to detect the number of CPUs in the machine that R is running, but not necessarily all the cores are available for the current user, because for example in multi-user systems it will depend on system policies. Further details can be found in the documentation for the parallel package. |
verbose |
logical, if TRUE will print iteration history. |
Monte_Carlo |
If TRUE it will estimate the trace of the inverse of the hessian using Monte Carlo procedures, see Bai et al. (1996) for more details. This routine calls the function estimate.trace() to perform the computations. |
tol |
numeric tolerance, a tiny number useful for checking convergenge in the Bai's algorithm. |
samples |
positive integer, number of Monte Carlo replicates to estimate the trace of the inverse, see Bai et al. (1996) for more details. |
contrasts |
an optional list of contrasts to be used for some or all of the factors appearing as variables in the model formula. |
... |
arguments passed to or from other methods. |
The software fits a two layer network as described in MacKay (1992) and Foresee and Hagan (1997). The model is given by:
y_i=g(\boldsymbol{x}_i)+e_i = \sum_{k=1}^s w_k g_k (b_k + \sum_{j=1}^p x_{ij} \beta_j^{[k]}) + e_i, i=1,...,n
where:
e_i \sim N(0,\sigma_e^2)
.
s
is the number of neurons.
w_k
is the weight of the k
-th neuron, k=1,...,s
.
b_k
is a bias for the k
-th neuron, k=1,...,s
.
\beta_j^{[k]}
is the weight of the j
-th input to the net, j=1,...,p
.
g_k(\cdot)
is the activation function, in this implementation g_k(x)=\frac{\exp(2x)-1}{\exp(2x)+1}
.
The software will minimize
F=\beta E_D + \alpha E_W
where
E_D=\sum_{i=1}^n (y_i-\hat y_i)^2
, i.e. the error sum of squares.
E_W
is the sum of squares of network parameters (weights and biases).
\beta=\frac{1}{2\sigma^2_e}
.
\alpha=\frac{1}{2\sigma_\theta^2}
, \sigma_\theta^2
is a dispersion parameter for weights and biases.
object of class "brnn"
or "brnn.formula"
. Mostly internal structure, but it is a list containing:
$theta |
A list containing weights and biases. The first |
$message |
String that indicates the stopping criteria for the training process. |
$alpha |
|
$beta |
|
$gamma |
effective number of parameters. |
$Ew |
The sum of the squares of the bias and weights. |
$Ed |
The sum of the squares between observed and predicted values. |
Bai, Z. J., M. Fahey and G. Golub. 1996. "Some large-scale matrix computation problems." Journal of Computational and Applied Mathematics 74(1-2), 71-89.
Foresee, F. D., and M. T. Hagan. 1997. "Gauss-Newton approximation to Bayesian regularization", Proceedings of the 1997 International Joint Conference on Neural Networks.
Gianola, D. Okut, H., Weigel, K. and Rosa, G. 2011. "Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat". BMC Genetics, 12,87.
MacKay, D. J. C. 1992. "Bayesian interpolation", Neural Computation, 4(3), 415-447.
Nguyen, D. and Widrow, B. 1990. "Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights", Proceedings of the IJCNN, 3, 21-26.
Paciorek, C. J. and Schervish, M. J. 2004. "Nonstationary Covariance Functions for Gaussian Process Regression". In Thrun, S., Saul, L., and Scholkopf, B., editors, Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA.
predict.brnn
## Not run:
#Load the library
library(brnn)
###############################################################
#Example 1
#Noise triangle wave function, similar to example 1 in Foresee and Hagan (1997)
#Generating the data
x1=seq(0,0.23,length.out=25)
y1=4*x1+rnorm(25,sd=0.1)
x2=seq(0.25,0.75,length.out=50)
y2=2-4*x2+rnorm(50,sd=0.1)
x3=seq(0.77,1,length.out=25)
y3=4*x3-4+rnorm(25,sd=0.1)
x=c(x1,x2,x3)
y=c(y1,y2,y3)
#With the formula interface
out=brnn(y~x,neurons=2)
#With the default S3 method the call is
#out=brnn(y=y,x=as.matrix(x),neurons=2)
plot(x,y,xlim=c(0,1),ylim=c(-1.5,1.5),
main="Bayesian Regularization for ANN 1-2-1")
lines(x,predict(out),col="blue",lty=2)
legend("topright",legend="Fitted model",col="blue",lty=2,bty="n")
###############################################################
#Example 2
#sin wave function, example in the Matlab 2010b demo.
x = seq(-1,0.5,length.out=100)
y = sin(2*pi*x)+rnorm(length(x),sd=0.1)
#With the formula interface
out=brnn(y~x,neurons=3)
#With the default method the call is
#out=brnn(y=y,x=as.matrix(x),neurons=3)
plot(x,y)
lines(x,predict(out),col="blue",lty=2)
legend("bottomright",legend="Fitted model",col="blue",lty=2,bty="n")
###############################################################
#Example 3
#2 Inputs and 1 output
#the data used in Paciorek and
#Schervish (2004). The data is from a two input one output function with Gaussian noise
#with mean zero and standard deviation 0.25
data(twoinput)
#Formula interface
out=brnn(y~x1+x2,data=twoinput,neurons=10)
#With the default S3 method
#out=brnn(y=as.vector(twoinput$y),x=as.matrix(cbind(twoinput$x1,twoinput$x2)),neurons=10)
f=function(x1,x2) predict(out,cbind(x1,x2))
x1=seq(min(twoinput$x1),max(twoinput$x1),length.out=50)
x2=seq(min(twoinput$x2),max(twoinput$x2),length.out=50)
z=outer(x1,x2,f) # calculating the density values
transformation_matrix=persp(x1, x2, z,
main="Fitted model",
sub=expression(y==italic(g)~(bold(x))+e),
col="lightgreen",theta=30, phi=20,r=50,
d=0.1,expand=0.5,ltheta=90, lphi=180,
shade=0.75, ticktype="detailed",nticks=5)
points(trans3d(twoinput$x1,twoinput$x2, f(twoinput$x1,twoinput$x2),
transformation_matrix), col = "red")
###############################################################
#Example 4
#Gianola et al. (2011).
#Warning, it will take a while
#Load the Jersey dataset
data(Jersey)
#Fit the model with the FULL DATA
#Formula interface
out=brnn(pheno$yield_devMilk~G,neurons=2,verbose=TRUE)
#Obtain predictions and plot them against fitted values
plot(pheno$yield_devMilk,predict(out))
#Predictive power of the model using the SECOND set for 10 fold CROSS-VALIDATION
data=pheno
data$X=G
data$partitions=partitions
#Fit the model for the TESTING DATA
out=brnn(yield_devMilk~X,
data=subset(data,partitions!=2),neurons=2,verbose=TRUE)
#Plot the results
#Predicted vs observed values for the training set
par(mfrow=c(2,1))
plot(out$y,predict(out),xlab=expression(hat(y)),ylab="y")
cor(out$y,predict(out))
#Predicted vs observed values for the testing set
yhat_R_testing=predict(out,newdata=subset(data,partitions==2))
ytesting=pheno$yield_devMilk[partitions==2]
plot(ytesting,yhat_R_testing,xlab=expression(hat(y)),ylab="y")
cor(ytesting,yhat_R_testing)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.