initnw | R Documentation |
Function to initialize the weights and biases in a neural network. It uses the Nguyen-Widrow (1990) algorithm.
initnw(neurons,p,n,npar)
neurons |
Number of neurons. |
p |
Number of predictors. |
n |
Number of cases. |
npar |
Number of parameters to be estimate including only weights and biases, and should be equal to |
The algorithm is described in Nguyen-Widrow (1990) and in other books, see for example Sivanandam and Sumathi (2005). The algorithm is briefly described below.
1.-Compute the scaling factor \theta=0.7 p^{1/n}
.
2.- Initialize the weight and biases for each neuron at random, for example generating random numbers from U(-0.5,0.5)
.
3.- For each neuron:
compute \eta_k=\sqrt{\sum_{j=1}^p (\beta_j^{(k)})^2}
,
update (\beta_1^{(k)},...,\beta_p^{(k)})'
,
\beta_j^{(k)}=\frac{\theta \beta_j^{(k)}}{\eta_k}, j=1,...,p,
Update the bias (b_k)
generating a random number from U(-\theta,\theta)
.
A list containing initial values for weights and biases. The first s
components of the list contains vectors with the initial values for
the weights and biases of the k
-th neuron, i.e. (\omega_k, b_k, \beta_1^{(k)},...,\beta_p^{(k)})'
.
Nguyen, D. and Widrow, B. 1990. "Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights", Proceedings of the IJCNN, 3, 21-26.
Sivanandam, S.N. and Sumathi, S. 2005. Introduction to Neural Networks Using MATLAB 6.0. Ed. McGraw Hill, First edition.
## Not run:
#Load the library
library(brnn)
#Set parameters
neurons=3
p=4
n=10
npar=neurons*(1+1+p)+1
initnw(neurons=neurons,p=p,n=n,npar=npar)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.