Nothing
## ----knitr-set-chunk, include = FALSE-----------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
warning = FALSE,
message = FALSE
)
## ----setup--------------------------------------------------------------------
library(brolgar)
## ----wages-ts, eval = FALSE---------------------------------------------------
# wages <- as_tsibble(wages,
# key = id,
# index = xp,
# regular = FALSE)
## ----n-obs--------------------------------------------------------------------
n_keys(wages)
## ----n-key-obs----------------------------------------------------------------
wages %>%
features(ln_wages, n_obs)
## ----plot-nobs----------------------------------------------------------------
library(ggplot2)
wages %>%
features(ln_wages, n_obs) %>%
ggplot(aes(x = n_obs)) +
geom_bar()
## ----show-add-n-obs-----------------------------------------------------------
wages %>% add_n_obs()
## ----show-add-obs-filter------------------------------------------------------
library(dplyr)
wages %>%
add_n_obs() %>%
filter(n_obs > 3)
## ----wages-xp-----------------------------------------------------------------
wages_xp_range <- wages %>%
features(xp,
feat_ranges)
ggplot(wages_xp_range,
aes(x = range_diff)) +
geom_histogram()
## ----wages-xp-prop------------------------------------------------------------
wages_xp_range %>%
count(range_diff) %>%
mutate(prop = n / sum(n))
## ----plot-sample-n-keys-------------------------------------------------------
set.seed(2019-7-15-1300)
wages %>%
sample_n_keys(size = 10) %>%
ggplot(aes(x = xp,
y = ln_wages,
group = id)) +
geom_line()
## ----plot-filter-sample-n-keys------------------------------------------------
library(dplyr)
wages %>%
add_n_obs() %>%
filter(n_obs > 5) %>%
sample_n_keys(size = 10) %>%
ggplot(aes(x = xp,
y = ln_wages,
group = id)) +
geom_line()
## ----facet-strata-------------------------------------------------------------
set.seed(2019-07-23-1936)
library(ggplot2)
ggplot(wages,
aes(x = xp,
y = ln_wages,
group = id)) +
geom_line() +
facet_strata()
## ----facet-strata-20----------------------------------------------------------
set.seed(2019-07-25-1450)
library(ggplot2)
ggplot(wages,
aes(x = xp,
y = ln_wages,
group = id)) +
geom_line() +
facet_strata(n_strata = 20)
## ----facet-sample-------------------------------------------------------------
set.seed(2019-07-23-1937)
ggplot(wages,
aes(x = xp,
y = ln_wages,
group = id)) +
geom_line() +
facet_sample()
## ----facet-sample-3by-20------------------------------------------------------
set.seed(2019-07-25-1533)
ggplot(wages,
aes(x = xp,
y = ln_wages,
group = id)) +
geom_line() +
facet_sample(n_per_facet = 3,
n_facets = 20)
## ----use-gghighlight----------------------------------------------------------
key_slope(wages,ln_wages ~ xp)
## ----show-wages-lg------------------------------------------------------------
library(dplyr)
wages_slope <- key_slope(wages,ln_wages ~ xp) %>%
left_join(wages, by = "id")
wages_slope
## ----use-gg-highlight---------------------------------------------------------
library(gghighlight)
wages_slope %>%
as_tibble() %>% # workaround for gghighlight + tsibble
ggplot(aes(x = xp,
y = ln_wages,
group = id)) +
geom_line() +
gghighlight(.slope_xp < 0)
## ----keys-near----------------------------------------------------------------
wages_slope %>%
keys_near(key = id,
var = .slope_xp,
funs = l_three_num)
## ----keys-near-plot-----------------------------------------------------------
wages_slope %>%
keys_near(key = id,
var = .slope_xp,
funs = l_three_num) %>%
left_join(wages, by = "id") %>%
ggplot(aes(x = xp,
y = ln_wages,
group = id,
colour = stat)) +
geom_line()
## ----features-min-------------------------------------------------------------
wages %>%
features(ln_wages,
list(min = min))
## ----features-five-num--------------------------------------------------------
wages %>%
features(ln_wages, feat_five_num)
## ----features-monotonic-------------------------------------------------------
wages %>%
features(ln_wages, feat_monotonic)
## ----features-left-join-------------------------------------------------------
wages %>%
features(ln_wages, feat_monotonic) %>%
left_join(wages, by = "id") %>%
ggplot(aes(x = xp,
y = ln_wages,
group = id)) +
geom_line() +
gghighlight(increase)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.