Nothing
library(tsibble)
library(brolgar)
world_heights %>%
filter(nearest_qt(height_cm))
# we need a way to add a label of the quantiles so we can plot them on top of
# the data.
heights <- as_tsibble(x = world_heights,
key = country,
index = year,
regular = FALSE)
library(feasts)
heights %>%
features(features = count)
heights_qs <- heights %>%
filter(nearest_qt(height_cm)) %>%
semi_join(heights, ., by = "country")
autoplot(heights_qs, .vars = height_cm)
library(ggplot2)
library(gghighlight)
ggplot(heights,
aes(x = year,
y = height_cm,
group = country)) +
geom_line() +
gghighlight()
wages_ts <- as_tsibble(x = wages,
key = id, # the thing that identifies each distinct series
index = exper, # the time part
regular = FALSE) # important for longitudinal data
wages_ts
heights <- as_tsibble(x = world_heights,
key = country,
index = year,
regular = FALSE)
l_fivenum <- list(min = b_min,
max = b_max,
median = b_median,
q1 = b_q25,
q3 = b_q75)
heights %>%
add_l_slope(id)
summarise_at(vars(height_cm),
l_fivenum)
wages_lm <- lm(lnw ~ exper, wages_ts)
wages %>%
l_slope(id = id,
formula = lnw ~ exper)
library(feasts)
library(tsibbledata)
slope <- function(x, ...){
setNames(coef(lm(x ~ seq_along(x))), c("int", "slope"))
}
library(dplyr)
aus_retail %>%
features(Turnover, features_stl) %>%
filter(seasonal_strength_year %in% range(seasonal_strength_year)) %>%
semi_join(aus_retail, ., by = c("State", "Industry")) %>%
autoplot(Turnover)
aus_retail %>%
features(Turnover, crossing_points) %>%
filter(nearest_qt(seasonal_strength.year, type = 8)) %>%
semi_join(aus_retail, ., by = c("State", "Industry")) %>%
autoplot(Turnover)
# summarise(seas_strength = list(as_tibble(as.list(quantile(seasonal_strength.year, type = 8))))) %>%
# tidyr::unnest()
library(fable)
.resid <- aus_retail %>%
model(SNAIVE(Turnover)) %>%
residuals()
.resid %>%
filter(!is.na(.resid), length(.resid) > 24) %>%
features(.resid, slope) %>%
filter(nearest_qt(slope, type = 8)) %>%
semi_join(aus_retail, ., by = c("State", "Industry")) %>%
autoplot(Turnover)
aus_retail %>%
filter(Industry == "Other specialised food retailing") %>%
autoplot(Turnover)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.