Description Usage Arguments Details Value Examples

Quantile normalizes two vectors or a matrix.

1 |

`x` |
Numeric vector or matrix |

`y` |
Optional second numeric vector |

We sort the columns, take averages across rows, and then plug the averages back into the respective positions. The marginal distributions in the columns are thus forced to be the same. Missing values, which can result in differing numbers of observed values per column, are dealt with by linear interpolation.

If two vectors, `x`

and `y`

, are provided, the output is a
matrix with two columns, with the quantile normalized versions of
`x`

and `y`

.
If `y`

is missing, `x`

should be a matrix, in which case the
output is a matrix of the same dimensions with the columns quantile
normalized with respect to each other.

1 2 3 4 5 6 7 8 9 10 11 12 | ```
z <- rmvn(10000, mu=c(0,5,10), V = rbind(c(1,0.5,0.5),c(0.5,1,0.5),c(0.5,0.5,1)))
z[sample(prod(dim(z)), 1500)] <- NA
pairs(z)
br <- seq(min(z, na.rm=TRUE), max(z, na.rm=TRUE), length=200)
par(mfrow=c(3,1))
for(i in 1:3)
hist(z[,i], xlab="z", main=i, breaks=br)
zn <- normalize(z)
br <- seq(min(zn, na.rm=TRUE), max(zn, na.rm=TRUE), length=200)
for(i in 1:3)
hist(zn[,i], xlab="normalized z", main=i, breaks=br)
pairs(zn)
``` |

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.