View source: R/model_list_variables.R
| model_list_variables | R Documentation |
Including variables used only in an interaction.
model_list_variables(
model,
labels = NULL,
only_variable = FALSE,
add_var_type = FALSE,
instrumental_suffix = " (instrumental)"
)
## Default S3 method:
model_list_variables(
model,
labels = NULL,
only_variable = FALSE,
add_var_type = FALSE,
instrumental_suffix = " (instrumental)"
)
## S3 method for class 'lavaan'
model_list_variables(
model,
labels = NULL,
only_variable = FALSE,
add_var_type = FALSE,
instrumental_suffix = " (instrumental)"
)
## S3 method for class 'logitr'
model_list_variables(
model,
labels = NULL,
only_variable = FALSE,
add_var_type = FALSE,
instrumental_suffix = " (instrumental)"
)
model |
(a model object, e.g. |
labels |
( |
only_variable |
( |
add_var_type |
( |
instrumental_suffix |
( |
A tibble with three columns:
variable: the corresponding variable
var_class: class of the variable (cf. stats::.MFclass())
label_attr: variable label defined in the original data frame
with the label attribute (cf. labelled::var_label())
var_label: a variable label (by priority, labels if defined,
label_attr if available, otherwise variable)
If add_var_type = TRUE:
var_type: "continuous", "dichotomous" (categorical variable with 2 levels),
"categorical" (categorical variable with 3 or more levels), "intercept"
or "interaction"
var_nlevels: number of original levels for categorical variables
Other model_helpers:
model_compute_terms_contributions(),
model_get_assign(),
model_get_coefficients_type(),
model_get_contrasts(),
model_get_model(),
model_get_model_frame(),
model_get_model_matrix(),
model_get_n(),
model_get_nlevels(),
model_get_offset(),
model_get_pairwise_contrasts(),
model_get_response(),
model_get_response_variable(),
model_get_terms(),
model_get_weights(),
model_get_xlevels(),
model_identify_variables(),
model_list_contrasts(),
model_list_higher_order_variables(),
model_list_terms_levels()
df <- Titanic |>
dplyr::as_tibble() |>
dplyr::mutate(Survived = factor(Survived, c("No", "Yes")))
glm(
Survived ~ Class + Age:Sex,
data = df, weights = df$n,
family = binomial
) |>
model_list_variables()
lm(
Sepal.Length ~ poly(Sepal.Width, 2) + Species,
data = iris,
contrasts = list(Species = contr.sum)
) |>
model_list_variables()
glm(
response ~ poly(age, 3) + stage + grade * trt,
na.omit(gtsummary::trial),
family = binomial,
) |>
model_list_variables()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.