View source: R/marginal_tidiers.R
| tidy_avg_slopes | R Documentation | 
marginaleffects::avg_slopes()Use marginaleffects::avg_slopes() to estimate marginal slopes / effects and
return a tibble tidied in a way that it could be used by broom.helpers
functions. See marginaleffects::avg_slopes() for a list of supported
models.
tidy_avg_slopes(x, conf.int = TRUE, conf.level = 0.95, ...)
| x | (a model object, e.g.  | 
| conf.int | ( | 
| conf.level | ( | 
| ... | Additional parameters passed to
 | 
By default, marginaleffects::avg_slopes() estimate average marginal
effects (AME): an effect is computed for each observed value in the original
dataset before being averaged. Marginal Effects at the Mean (MEM) could be
computed by specifying newdata = "mean". Other types of marginal effects
could be computed. Please refer to the documentation page of
marginaleffects::avg_slopes().
For more information, see vignette("marginal_tidiers", "broom.helpers").
marginaleffects::avg_slopes()
Other marginal_tieders: 
tidy_all_effects(),
tidy_avg_comparisons(),
tidy_ggpredict(),
tidy_marginal_contrasts(),
tidy_marginal_predictions(),
tidy_margins()
# Average Marginal Effects (AME)
df <- Titanic |>
  dplyr::as_tibble() |>
  tidyr::uncount(n) |>
  dplyr::mutate(Survived = factor(Survived, c("No", "Yes")))
mod <- glm(
  Survived ~ Class + Age + Sex,
  data = df, family = binomial
)
tidy_avg_slopes(mod)
tidy_plus_plus(mod, tidy_fun = tidy_avg_slopes)
mod2 <- lm(Petal.Length ~ poly(Petal.Width, 2) + Species, data = iris)
tidy_avg_slopes(mod2)
# Marginal Effects at the Mean (MEM)
tidy_avg_slopes(mod, newdata = "mean")
tidy_plus_plus(mod, tidy_fun = tidy_avg_slopes, newdata = "mean")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.