augment.nlrq: Tidy a(n) nlrq object

augment.nlrqR Documentation

Tidy a(n) nlrq object

Description

Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.

Usage

## S3 method for class 'nlrq'
augment(x, data = NULL, newdata = NULL, ...)

Arguments

x

A nlrq object returned from quantreg::nlrq().

data

A base::data.frame or tibble::tibble() containing the original data that was used to produce the object x. Defaults to stats::model.frame(x) so that augment(my_fit) returns the augmented original data. Do not pass new data to the data argument. Augment will report information such as influence and cooks distance for data passed to the data argument. These measures are only defined for the original training data.

newdata

A base::data.frame() or tibble::tibble() containing all the original predictors used to create x. Defaults to NULL, indicating that nothing has been passed to newdata. If newdata is specified, the data argument will be ignored.

...

Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in ..., where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you pass conf.lvel = 0.9, all computation will proceed using conf.level = 0.95. Two exceptions here are:

  • tidy() methods will warn when supplied an exponentiate argument if it will be ignored.

  • augment() methods will warn when supplied a newdata argument if it will be ignored.

See Also

augment(), quantreg::nlrq()

Other quantreg tidiers: augment.rqs(), augment.rq(), glance.nlrq(), glance.rq(), tidy.nlrq(), tidy.rqs(), tidy.rq()

Examples


# fit model
n <- nls(mpg ~ k * e^wt, data = mtcars, start = list(k = 1, e = 2))

# summarize model fit with tidiers + visualization
tidy(n)
augment(n)
glance(n)

library(ggplot2)

ggplot(augment(n), aes(wt, mpg)) +
  geom_point() +
  geom_line(aes(y = .fitted))

newdata <- head(mtcars)
newdata$wt <- newdata$wt + 1

augment(n, newdata = newdata)


broom documentation built on Aug. 30, 2022, 1:07 a.m.