View source: R/compute_historical_decompositions.R
| compute_historical_decompositions.PosteriorBSVARMIX | R Documentation | 
Each of the draws from the posterior estimation of models from packages bsvars or bsvarSIGNs is transformed into a draw from the posterior distribution of the historical decompositions. IMPORTANT! The historical decompositions are interpreted correctly for covariance stationary data. Application to unit-root non-stationary data might result in non-interpretable outcomes.
## S3 method for class 'PosteriorBSVARMIX'
compute_historical_decompositions(posterior, show_progress = TRUE)
| posterior | posterior estimation outcome - an object of class 
 | 
| show_progress | a logical value, if  | 
An object of class PosteriorHD, that is, an NxNxTxS array 
with attribute PosteriorHD containing S draws of the historical 
decompositions.
Tomasz Woźniak wozniak.tom@pm.me
Kilian, L., & Lütkepohl, H. (2017). Structural VAR Tools, Chapter 4, In: Structural vector autoregressive analysis. Cambridge University Press.
estimate, normalise_posterior, summary
# upload data
data(us_fiscal_lsuw)
# specify the model and set seed
set.seed(123)
specification  = specify_bsvar_mix$new(us_fiscal_lsuw, p = 1, M = 2)
# run the burn-in
burn_in        = estimate(specification, 10)
# estimate the model
posterior      = estimate(burn_in, 20)
# compute historical decompositions
hd             = compute_historical_decompositions(posterior)
# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
  specify_bsvar_mix$new(p = 1, M = 2) |>
  estimate(S = 10) |> 
  estimate(S = 20) |> 
  compute_historical_decompositions() -> hds
  
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.