View source: R/compute_variance_decompositions.R
compute_variance_decompositions.PosteriorBSVARMSH | R Documentation |
Each of the draws from the posterior estimation of the model is transformed into a draw from the posterior distribution of the forecast error variance decomposition. In this heteroskedastic model the forecast error variance decompositions are computed for the forecasts with the origin at the last observation in sample data and using the conditional variance forecasts.
## S3 method for class 'PosteriorBSVARMSH'
compute_variance_decompositions(posterior, horizon)
posterior |
posterior estimation outcome - an object of class
|
horizon |
a positive integer number denoting the forecast horizon for the forecast error variance decomposition computations. |
An object of class PosteriorFEVD, that is, an NxNx(horizon+1)xS
array with attribute PosteriorFEVD
containing S
draws of the forecast error variance decomposition.
Tomasz Woźniak wozniak.tom@pm.me
Kilian, L., & Lütkepohl, H. (2017). Structural VAR Tools, Chapter 4, In: Structural vector autoregressive analysis. Cambridge University Press.
compute_impulse_responses
, estimate
, normalise_posterior
, summary
# upload data
data(us_fiscal_lsuw)
# specify the model and set seed
set.seed(123)
specification = specify_bsvar_msh$new(us_fiscal_lsuw, p = 1, M = 2)
# run the burn-in
burn_in = estimate(specification, 10)
# estimate the model
posterior = estimate(burn_in, 20)
# compute forecast error variance decomposition 2 years ahead
fevd = compute_variance_decompositions(posterior, horizon = 8)
# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
specify_bsvar_msh$new(p = 1, M = 2) |>
estimate(S = 10) |>
estimate(S = 20) |>
compute_variance_decompositions(horizon = 8) -> fevd
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.