Nothing
#' @title Computes posterior draws of the forecast error variance decomposition
#'
#' @description Each of the draws from the posterior estimation of models from
#' packages \pkg{bsvars} or \pkg{bsvarSIGNs}
#' is transformed into a draw from the posterior distribution of the forecast error variance decomposition.
#'
#' @param posterior posterior estimation outcome obtained by running the \code{estimate} function.
#' The interpretation depends on the normalisation of the shocks
#' using function \code{normalise_posterior()}. Verify if the default settings are appropriate.
#' @param horizon a positive integer number denoting the forecast horizon for
#' the forecast error variance decomposition computations.
#'
#' @return An object of class PosteriorFEVD, that is, an \code{NxNx(horizon+1)xS} array with attribute PosteriorFEVD
#' containing \code{S} draws of the forecast error variance decomposition.
#'
#' @seealso \code{\link{compute_impulse_responses}}, \code{\link{estimate}}, \code{\link{normalise_posterior}}, \code{\link{summary}}
#'
#' @author Tomasz Woźniak \email{wozniak.tom@pm.me}
#'
#' @references
#' Kilian, L., & Lütkepohl, H. (2017). Structural VAR Tools, Chapter 4, In: Structural vector autoregressive analysis. Cambridge University Press.
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar$new(us_fiscal_lsuw, p = 1)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute forecast error variance decomposition 2 years ahead
#' fevd = compute_variance_decompositions(posterior, horizon = 8)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar$new(p = 1) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_variance_decompositions(horizon = 8) -> fevd
#'
#' @export
compute_variance_decompositions <- function(posterior, horizon) {
stopifnot("Argument horizon must be a positive integer number." = horizon > 0 & horizon %% 1 == 0)
UseMethod("compute_variance_decompositions", posterior)
}
#' @inherit compute_variance_decompositions
#' @method compute_variance_decompositions PosteriorBSVAR
#' @description Each of the draws from the posterior estimation of the model
#' is transformed into a draw from the posterior distribution of the forecast
#' error variance decomposition.
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVAR} obtained by running the \code{estimate} function.
#'
#' @export
compute_variance_decompositions.PosteriorBSVAR <- function(posterior, horizon) {
posterior_B = posterior$posterior$B
posterior_A = posterior$posterior$A
N = dim(posterior_A)[1]
p = posterior$last_draw$p
S = dim(posterior_A)[3]
Y = posterior$last_draw$data_matrices$Y
posterior_irf = .Call(`_bsvars_bsvars_ir`, posterior_B, posterior_A, horizon, p, TRUE)
qqq = .Call(`_bsvars_bsvars_fevd_homosk`, posterior_irf)
fevd = array(NA, c(N, N, horizon + 1, S), dimnames = list(rownames(Y), rownames(Y), 0:horizon, 1:S))
for (s in 1:S) fevd[,,,s] = qqq[s][[1]]
class(fevd) = "PosteriorFEVD"
return(fevd)
}
#' @inherit compute_variance_decompositions
#' @method compute_variance_decompositions PosteriorBSVARMSH
#' @description Each of the draws from the posterior estimation of the model
#' is transformed into a draw from the posterior distribution of the forecast
#' error variance decomposition. In this heteroskedastic model the forecast error
#' variance decompositions are computed for the forecasts with the origin at the
#' last observation in sample data and using the conditional variance forecasts.
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVARMSH} obtained by running the \code{estimate} function.
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar_msh$new(us_fiscal_lsuw, p = 1, M = 2)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute forecast error variance decomposition 2 years ahead
#' fevd = compute_variance_decompositions(posterior, horizon = 8)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar_msh$new(p = 1, M = 2) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_variance_decompositions(horizon = 8) -> fevd
#'
#' @export
compute_variance_decompositions.PosteriorBSVARMSH <- function(posterior, horizon) {
posterior_B = posterior$posterior$B
posterior_A = posterior$posterior$A
N = dim(posterior_A)[1]
p = posterior$last_draw$p
S = dim(posterior_A)[3]
T = dim(posterior$posterior$xi)[2]
posterior_PR_TR = posterior$posterior$PR_TR
posterior_sigma2 = posterior$posterior$sigma2
S_T = posterior$posterior$xi[,T,]
sigma2_T = posterior$posterior$sigma[,T,]^2
Y = posterior$last_draw$data_matrices$Y
posterior_irf = .Call(`_bsvars_bsvars_ir`, posterior_B, posterior_A, horizon, p, TRUE)
sigma2 = .Call(`_bsvars_forecast_sigma2_msh`, posterior_sigma2, posterior_PR_TR, S_T, horizon)
qqq = .Call(`_bsvars_bsvars_fevd_heterosk`, posterior_irf, sigma2, sigma2_T)
fevd = array(NA, c(N, N, horizon + 1, S), dimnames = list(rownames(Y), rownames(Y), 0:horizon, 1:S))
for (s in 1:S) fevd[,,,s] = qqq[s][[1]]
class(fevd) = "PosteriorFEVD"
return(fevd)
}
#' @inherit compute_variance_decompositions
#' @method compute_variance_decompositions PosteriorBSVARMIX
#' @description Each of the draws from the posterior estimation of the model
#' is transformed into a draw from the posterior distribution of the forecast
#' error variance decomposition. In this mixture model the forecast error
#' variance decompositions are computed for the forecasts with the origin at the
#' last observation in sample data and using the conditional variance forecasts.
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVARMIX} obtained by running the \code{estimate} function.
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar_mix$new(us_fiscal_lsuw, p = 1, M = 2)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute forecast error variance decomposition 2 years ahead
#' fevd = compute_variance_decompositions(posterior, horizon = 8)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar_mix$new(p = 1, M = 2) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_variance_decompositions(horizon = 8) -> fevd
#'
#' @export
compute_variance_decompositions.PosteriorBSVARMIX <- function(posterior, horizon) {
posterior_B = posterior$posterior$B
posterior_A = posterior$posterior$A
N = dim(posterior_A)[1]
p = posterior$last_draw$p
S = dim(posterior_A)[3]
T = dim(posterior$posterior$xi)[2]
posterior_PR_TR = posterior$posterior$PR_TR
posterior_sigma2 = posterior$posterior$sigma2
S_T = posterior$posterior$xi[,T,]
sigma2_T = posterior$posterior$sigma[,T,]^2
Y = posterior$last_draw$data_matrices$Y
posterior_irf = .Call(`_bsvars_bsvars_ir`, posterior_B, posterior_A, horizon, p, TRUE)
sigma2 = .Call(`_bsvars_forecast_sigma2_msh`, posterior_sigma2, posterior_PR_TR, S_T, horizon)
qqq = .Call(`_bsvars_bsvars_fevd_heterosk`, posterior_irf, sigma2, sigma2_T)
fevd = array(NA, c(N, N, horizon + 1, S), dimnames = list(rownames(Y), rownames(Y), 0:horizon, 1:S))
for (s in 1:S) fevd[,,,s] = qqq[s][[1]]
class(fevd) = "PosteriorFEVD"
return(fevd)
}
#' @inherit compute_variance_decompositions
#' @method compute_variance_decompositions PosteriorBSVARSV
#' @description Each of the draws from the posterior estimation of the model
#' is transformed into a draw from the posterior distribution of the forecast
#' error variance decomposition. In this heteroskedastic model the forecast error
#' variance decompositions are computed for the forecasts with the origin at the
#' last observation in sample data and using the conditional variance forecasts.
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVARSV} obtained by running the \code{estimate} function.
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar_sv$new(us_fiscal_lsuw, p = 1)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute forecast error variance decomposition 2 years ahead
#' fevd = compute_variance_decompositions(posterior, horizon = 8)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar_sv$new(p = 1) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_variance_decompositions(horizon = 8) -> fevd
#'
#' @export
compute_variance_decompositions.PosteriorBSVARSV <- function(posterior, horizon) {
posterior_B = posterior$posterior$B
posterior_A = posterior$posterior$A
N = dim(posterior_A)[1]
p = posterior$last_draw$p
S = dim(posterior_A)[3]
T = dim(posterior$posterior$h)[2]
posterior_h_T = posterior$posterior$h[,T,]
posterior_rho = posterior$posterior$rho
posterior_omega = posterior$posterior$omega
centred_sv = posterior$last_draw$centred_sv
sigma2_T = posterior$posterior$sigma[,T,]^2
Y = posterior$last_draw$data_matrices$Y
posterior_irf = .Call(`_bsvars_bsvars_ir`, posterior_B, posterior_A, horizon, p, TRUE)
sigma2 = .Call(`_bsvars_forecast_sigma2_sv`, posterior_h_T, posterior_rho, posterior_omega, horizon, centred_sv)
qqq = .Call(`_bsvars_bsvars_fevd_heterosk`, posterior_irf, sigma2, sigma2_T)
fevd = array(NA, c(N, N, horizon + 1, S), dimnames = list(rownames(Y), rownames(Y), 0:horizon, 1:S))
for (s in 1:S) fevd[,,,s] = qqq[s][[1]]
class(fevd) = "PosteriorFEVD"
return(fevd)
}
#' @inherit compute_variance_decompositions
#' @method compute_variance_decompositions PosteriorBSVART
#' @description Each of the draws from the posterior estimation of the model
#' is transformed into a draw from the posterior distribution of the forecast
#' error variance decomposition.
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVART} obtained by running the \code{estimate} function.
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar_t$new(us_fiscal_lsuw)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute forecast error variance decomposition 2 years ahead
#' fevd = compute_variance_decompositions(posterior, horizon = 8)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar_t$new() |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_variance_decompositions(horizon = 8) -> fevd
#'
#' @export
compute_variance_decompositions.PosteriorBSVART <- function(posterior, horizon) {
posterior_B = posterior$posterior$B
posterior_A = posterior$posterior$A
posterior_df = posterior$posterior$df
p = posterior$last_draw$p
N = dim(posterior_A)[1]
S = dim(posterior_A)[3]
T = dim(posterior$posterior$lambda)[1]
sigma2 = array(NA, c(N, horizon, S))
sigma2_T = matrix(NA, N, S)
Y = posterior$last_draw$data_matrices$Y
posterior_irf = .Call(`_bsvars_bsvars_ir`, posterior_B, posterior_A, horizon, p, TRUE)
lambda = .Call(`_bsvars_forecast_lambda_t`, posterior_df, horizon) # (horizon, S)
for (n in 1:N) {
sigma2[n,,] = lambda
sigma2_T[n,] = posterior$posterior$lambda[T,]
}
qqq = .Call(`_bsvars_bsvars_fevd_heterosk`, posterior_irf, sigma2, sigma2_T)
fevd = array(NA, c(N, N, horizon + 1, S), dimnames = list(rownames(Y), rownames(Y), 0:horizon, 1:S))
for (s in 1:S) fevd[,,,s] = qqq[s][[1]]
class(fevd) = "PosteriorFEVD"
return(fevd)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.