Nothing
#' @title Computes posterior draws of historical decompositions
#'
#' @description Each of the draws from the posterior estimation of models from
#' packages \pkg{bsvars} or \pkg{bsvarSIGNs} is transformed into
#' a draw from the posterior distribution of the historical decompositions.
#' IMPORTANT! The historical decompositions are interpreted correctly for
#' covariance stationary data. Application to unit-root non-stationary data might
#' result in non-interpretable outcomes.
#'
#' @param posterior posterior estimation outcome obtained by running the \code{estimate}
#' function. The interpretation depends on the normalisation of the shocks
#' using function \code{normalise_posterior()}. Verify if the default settings
#' are appropriate.
#' @param show_progress a logical value, if \code{TRUE} the estimation progress bar is visible
#'
#' @return An object of class \code{PosteriorHD}, that is, an \code{NxNxTxS} array
#' with attribute \code{PosteriorHD} containing \code{S} draws of the historical
#' decompositions.
#'
#' @seealso \code{\link{estimate}}, \code{\link{normalise_posterior}}, \code{\link{summary}}
#'
#' @author Tomasz Woźniak \email{wozniak.tom@pm.me}
#'
#' @references
#' Kilian, L., & Lütkepohl, H. (2017). Structural VAR Tools, Chapter 4, In: Structural vector autoregressive analysis. Cambridge University Press.
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar$new(diff(us_fiscal_lsuw), p = 1)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute historical decompositions
#' hd = compute_historical_decompositions(posterior)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' diff(us_fiscal_lsuw) |>
#' specify_bsvar$new(p = 1) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_historical_decompositions() -> hd
#'
#' @export
compute_historical_decompositions <- function(posterior, show_progress = TRUE) {
stopifnot("Argument show_progress must be a logical value." = is.logical(show_progress))
UseMethod("compute_historical_decompositions", posterior)
}
#' @method compute_historical_decompositions PosteriorBSVAR
#'
#' @title Computes posterior draws of historical decompositions
#'
#' @description Each of the draws from the posterior estimation of models from
#' packages \pkg{bsvars} or \pkg{bsvarSIGNs} is transformed into
#' a draw from the posterior distribution of the historical decompositions.
#' IMPORTANT! The historical decompositions are interpreted correctly for
#' covariance stationary data. Application to unit-root non-stationary data might
#' result in non-interpretable outcomes.
#'
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVAR} obtained by running the \code{estimate} function.
#' @param show_progress a logical value, if \code{TRUE} the estimation progress bar is visible
#'
#' @return An object of class \code{PosteriorHD}, that is, an \code{NxNxTxS} array
#' with attribute \code{PosteriorHD} containing \code{S} draws of the historical
#' decompositions.
#'
#' @seealso \code{\link{estimate}}, \code{\link{normalise_posterior}}, \code{\link{summary}}
#'
#' @author Tomasz Woźniak \email{wozniak.tom@pm.me}
#'
#' @references
#' Kilian, L., & Lütkepohl, H. (2017). Structural VAR Tools, Chapter 4, In: Structural vector autoregressive analysis. Cambridge University Press.
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar$new(diff(us_fiscal_lsuw), p = 1)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute historical decompositions
#' hd = compute_historical_decompositions(posterior)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' diff(us_fiscal_lsuw) |>
#' specify_bsvar$new(p = 1) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_historical_decompositions() -> hd
#'
#' @export
compute_historical_decompositions.PosteriorBSVAR <- function(posterior, show_progress = TRUE) {
posterior_B = posterior$posterior$B
posterior_A = posterior$posterior$A
Y = posterior$last_draw$data_matrices$Y
X = posterior$last_draw$data_matrices$X
N = nrow(Y)
T = ncol(Y)
p = posterior$last_draw$p
S = dim(posterior_A)[3]
ss = .Call(`_bsvars_bsvars_structural_shocks`, posterior_B, posterior_A, Y, X)
ir = .Call(`_bsvars_bsvars_ir`, posterior_B, posterior_A, T, p, TRUE)
qqq = .Call(`_bsvars_bsvars_hd`, ir, ss, show_progress)
hd = array(NA, c(N, N, T, S), dimnames = list(rownames(Y), rownames(Y), colnames(Y), 1:S))
for (s in 1:S) hd[,,,s] = qqq[s][[1]]
class(hd) = "PosteriorHD"
return(hd)
}
#' @method compute_historical_decompositions PosteriorBSVARMSH
#'
#' @title Computes posterior draws of historical decompositions
#'
#' @description Each of the draws from the posterior estimation of models from
#' packages \pkg{bsvars} or \pkg{bsvarSIGNs} is transformed into
#' a draw from the posterior distribution of the historical decompositions.
#' IMPORTANT! The historical decompositions are interpreted correctly for
#' covariance stationary data. Application to unit-root non-stationary data might
#' result in non-interpretable outcomes.
#'
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVARMSH} obtained by running the \code{estimate} function.
#' @param show_progress a logical value, if \code{TRUE} the estimation progress bar is visible
#'
#' @return An object of class \code{PosteriorHD}, that is, an \code{NxNxTxS} array
#' with attribute \code{PosteriorHD} containing \code{S} draws of the historical
#' decompositions.
#'
#' @seealso \code{\link{estimate}}, \code{\link{normalise_posterior}}, \code{\link{summary}}
#'
#' @author Tomasz Woźniak \email{wozniak.tom@pm.me}
#'
#' @references
#' Kilian, L., & Lütkepohl, H. (2017). Structural VAR Tools, Chapter 4, In: Structural vector autoregressive analysis. Cambridge University Press.
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar_msh$new(us_fiscal_lsuw, p = 1, M = 2)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute historical decompositions
#' hd = compute_historical_decompositions(posterior)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar_msh$new(p = 1, M = 2) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_historical_decompositions() -> hds
#'
#' @export
compute_historical_decompositions.PosteriorBSVARMSH <- function(posterior, show_progress = TRUE) {
posterior_B = posterior$posterior$B
posterior_A = posterior$posterior$A
Y = posterior$last_draw$data_matrices$Y
X = posterior$last_draw$data_matrices$X
N = nrow(Y)
T = ncol(Y)
p = posterior$last_draw$p
S = dim(posterior_A)[3]
ss = .Call(`_bsvars_bsvars_structural_shocks`, posterior_B, posterior_A, Y, X)
ir = .Call(`_bsvars_bsvars_ir`, posterior_B, posterior_A, T, p, TRUE)
qqq = .Call(`_bsvars_bsvars_hd`, ir, ss, show_progress)
hd = array(NA, c(N, N, T, S), dimnames = list(rownames(Y), rownames(Y), colnames(Y), 1:S))
for (s in 1:S) hd[,,,s] = qqq[s][[1]]
class(hd) = "PosteriorHD"
return(hd)
}
#' @method compute_historical_decompositions PosteriorBSVARMIX
#'
#' @title Computes posterior draws of historical decompositions
#'
#' @description Each of the draws from the posterior estimation of models from
#' packages \pkg{bsvars} or \pkg{bsvarSIGNs} is transformed into
#' a draw from the posterior distribution of the historical decompositions.
#' IMPORTANT! The historical decompositions are interpreted correctly for
#' covariance stationary data. Application to unit-root non-stationary data might
#' result in non-interpretable outcomes.
#'
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVARMIX} obtained by running the \code{estimate} function.
#' @param show_progress a logical value, if \code{TRUE} the estimation progress bar is visible
#'
#' @return An object of class \code{PosteriorHD}, that is, an \code{NxNxTxS} array
#' with attribute \code{PosteriorHD} containing \code{S} draws of the historical
#' decompositions.
#'
#' @seealso \code{\link{estimate}}, \code{\link{normalise_posterior}}, \code{\link{summary}}
#'
#' @author Tomasz Woźniak \email{wozniak.tom@pm.me}
#'
#' @references
#' Kilian, L., & Lütkepohl, H. (2017). Structural VAR Tools, Chapter 4, In: Structural vector autoregressive analysis. Cambridge University Press.
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar_mix$new(us_fiscal_lsuw, p = 1, M = 2)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute historical decompositions
#' hd = compute_historical_decompositions(posterior)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar_mix$new(p = 1, M = 2) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_historical_decompositions() -> hds
#'
#' @export
compute_historical_decompositions.PosteriorBSVARMIX <- function(posterior, show_progress = TRUE) {
posterior_B = posterior$posterior$B
posterior_A = posterior$posterior$A
Y = posterior$last_draw$data_matrices$Y
X = posterior$last_draw$data_matrices$X
N = nrow(Y)
T = ncol(Y)
p = posterior$last_draw$p
S = dim(posterior_A)[3]
ss = .Call(`_bsvars_bsvars_structural_shocks`, posterior_B, posterior_A, Y, X)
ir = .Call(`_bsvars_bsvars_ir`, posterior_B, posterior_A, T, p, TRUE)
qqq = .Call(`_bsvars_bsvars_hd`, ir, ss, show_progress)
hd = array(NA, c(N, N, T, S), dimnames = list(rownames(Y), rownames(Y), colnames(Y), 1:S))
for (s in 1:S) hd[,,,s] = qqq[s][[1]]
class(hd) = "PosteriorHD"
return(hd)
}
#' @method compute_historical_decompositions PosteriorBSVARSV
#'
#' @title Computes posterior draws of historical decompositions
#'
#' @description Each of the draws from the posterior estimation of models from
#' packages \pkg{bsvars} or \pkg{bsvarSIGNs} is transformed into
#' a draw from the posterior distribution of the historical decompositions.
#' IMPORTANT! The historical decompositions are interpreted correctly for
#' covariance stationary data. Application to unit-root non-stationary data might
#' result in non-interpretable outcomes.
#'
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVARSV} obtained by running the \code{estimate} function.
#' @param show_progress a logical value, if \code{TRUE} the estimation progress bar is visible
#'
#' @return An object of class \code{PosteriorHD}, that is, an \code{NxNxTxS} array
#' with attribute \code{PosteriorHD} containing \code{S} draws of the historical
#' decompositions.
#'
#' @seealso \code{\link{estimate}}, \code{\link{normalise_posterior}}, \code{\link{summary}}
#'
#' @author Tomasz Woźniak \email{wozniak.tom@pm.me}
#'
#' @references
#' Kilian, L., & Lütkepohl, H. (2017). Structural VAR Tools, Chapter 4, In: Structural vector autoregressive analysis. Cambridge University Press.
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar_sv$new(us_fiscal_lsuw, p = 1)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 5)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 5)
#'
#' # compute historical decompositions
#' hd = compute_historical_decompositions(posterior)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar_sv$new(p = 1) |>
#' estimate(S = 5) |>
#' estimate(S = 5) |>
#' compute_historical_decompositions() -> hds
#'
#' @export
compute_historical_decompositions.PosteriorBSVARSV <- function(posterior, show_progress = TRUE) {
posterior_B = posterior$posterior$B
posterior_A = posterior$posterior$A
Y = posterior$last_draw$data_matrices$Y
X = posterior$last_draw$data_matrices$X
N = nrow(Y)
T = ncol(Y)
p = posterior$last_draw$p
S = dim(posterior_A)[3]
ss = .Call(`_bsvars_bsvars_structural_shocks`, posterior_B, posterior_A, Y, X)
ir = .Call(`_bsvars_bsvars_ir`, posterior_B, posterior_A, T, p, TRUE)
qqq = .Call(`_bsvars_bsvars_hd`, ir, ss, show_progress)
hd = array(NA, c(N, N, T, S), dimnames = list(rownames(Y), rownames(Y), colnames(Y), 1:S))
for (s in 1:S) hd[,,,s] = qqq[s][[1]]
class(hd) = "PosteriorHD"
return(hd)
}
#' @method compute_historical_decompositions PosteriorBSVART
#'
#' @title Computes posterior draws of historical decompositions
#'
#' @description Each of the draws from the posterior estimation of models from
#' packages \pkg{bsvars} or \pkg{bsvarSIGNs} is transformed into
#' a draw from the posterior distribution of the historical decompositions.
#' IMPORTANT! The historical decompositions are interpreted correctly for
#' covariance stationary data. Application to unit-root non-stationary data might
#' result in non-interpretable outcomes.
#'
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVART} obtained by running the \code{estimate} function.
#' @param show_progress a logical value, if \code{TRUE} the estimation progress bar is visible
#'
#' @return An object of class \code{PosteriorHD}, that is, an \code{NxNxTxS} array
#' with attribute \code{PosteriorHD} containing \code{S} draws of the historical
#' decompositions.
#'
#' @seealso \code{\link{estimate}}, \code{\link{normalise_posterior}}, \code{\link{summary}}
#'
#' @author Tomasz Woźniak \email{wozniak.tom@pm.me}
#'
#' @references
#' Kilian, L., & Lütkepohl, H. (2017). Structural VAR Tools, Chapter 4, In: Structural vector autoregressive analysis. Cambridge University Press.
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar_t$new(diff(us_fiscal_lsuw), p = 1)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 10)
#'
#' # compute historical decompositions
#' hd = compute_historical_decompositions(posterior)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' diff(us_fiscal_lsuw) |>
#' specify_bsvar_t$new(p = 1) |>
#' estimate(S = 10) |>
#' estimate(S = 10) |>
#' compute_historical_decompositions() -> hd
#'
#' @export
compute_historical_decompositions.PosteriorBSVART <- function(posterior, show_progress = TRUE) {
posterior_B = posterior$posterior$B
posterior_A = posterior$posterior$A
Y = posterior$last_draw$data_matrices$Y
X = posterior$last_draw$data_matrices$X
N = nrow(Y)
T = ncol(Y)
p = posterior$last_draw$p
S = dim(posterior_A)[3]
ss = .Call(`_bsvars_bsvars_structural_shocks`, posterior_B, posterior_A, Y, X)
ir = .Call(`_bsvars_bsvars_ir`, posterior_B, posterior_A, T, p, TRUE)
qqq = .Call(`_bsvars_bsvars_hd`, ir, ss, show_progress)
hd = array(NA, c(N, N, T, S), dimnames = list(rownames(Y), rownames(Y), colnames(Y), 1:S))
for (s in 1:S) hd[,,,s] = qqq[s][[1]]
class(hd) = "PosteriorHD"
return(hd)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.