| specify_bsvar_sv | R Documentation |
The class BSVARSV presents complete specification for the BSVAR model with Stochastic Volatility heteroskedasticity.
pa non-negative integer specifying the autoregressive lag order of the model.
identificationan object IdentificationBSVARs with the identifying restrictions.
prioran object PriorBSVARSV with the prior specification.
data_matricesan object DataMatricesBSVAR with the data matrices.
starting_valuesan object StartingValuesBSVARSV with the starting values.
centred_sva logical value - if true a centred parameterisation of the Stochastic Volatility process is estimated. Otherwise, its non-centred parameterisation is estimated. See Lütkepohl, Shang, Uzeda, Woźniak (2022) for more info.
new()Create a new specification of the BSVAR model with Stochastic Volatility heteroskedasticity, BSVARSV.
specify_bsvar_sv$new( data, p = 1L, B, exogenous = NULL, centred_sv = FALSE, stationary = rep(FALSE, ncol(data)) )
dataa (T+p)xN matrix with time series data.
pa positive integer providing model's autoregressive lag order.
Ba logical NxN matrix containing value TRUE for the elements of the structural matrix B to be estimated and value FALSE for exclusion restrictions to be set to zero.
exogenousa (T+p)xd matrix of exogenous variables.
centred_sva logical value. If FALSE a non-centred Stochastic Volatility processes for conditional variances are estimated. Otherwise, a centred process is estimated.
stationaryan N logical vector - its element set to FALSE sets the prior mean for the autoregressive parameters of the Nth equation to the white noise process, otherwise to random walk.
A new complete specification for the bsvar model with Stochastic Volatility heteroskedasticity, BSVARSV.
get_data_matrices()Returns the data matrices as the DataMatricesBSVAR object.
specify_bsvar_sv$get_data_matrices()
data(us_fiscal_lsuw) spec = specify_bsvar_sv$new( data = us_fiscal_lsuw, p = 4 ) spec$get_data_matrices()
get_identification()Returns the identifying restrictions as the IdentificationBSVARs object.
specify_bsvar_sv$get_identification()
data(us_fiscal_lsuw) spec = specify_bsvar_sv$new( data = us_fiscal_lsuw, p = 4 ) spec$get_identification()
get_prior()Returns the prior specification as the PriorBSVARSV object.
specify_bsvar_sv$get_prior()
data(us_fiscal_lsuw) spec = specify_bsvar_sv$new( data = us_fiscal_lsuw, p = 4 ) spec$get_prior()
get_starting_values()Returns the starting values as the StartingValuesBSVARSV object.
specify_bsvar_sv$get_starting_values()
data(us_fiscal_lsuw) spec = specify_bsvar_sv$new( data = us_fiscal_lsuw, p = 4 ) spec$get_starting_values()
clone()The objects of this class are cloneable with this method.
specify_bsvar_sv$clone(deep = FALSE)
deepWhether to make a deep clone.
estimate, specify_posterior_bsvar_sv
data(us_fiscal_lsuw)
spec = specify_bsvar_sv$new(
data = us_fiscal_lsuw,
p = 4
)
## ------------------------------------------------
## Method `specify_bsvar_sv$get_data_matrices`
## ------------------------------------------------
data(us_fiscal_lsuw)
spec = specify_bsvar_sv$new(
data = us_fiscal_lsuw,
p = 4
)
spec$get_data_matrices()
## ------------------------------------------------
## Method `specify_bsvar_sv$get_identification`
## ------------------------------------------------
data(us_fiscal_lsuw)
spec = specify_bsvar_sv$new(
data = us_fiscal_lsuw,
p = 4
)
spec$get_identification()
## ------------------------------------------------
## Method `specify_bsvar_sv$get_prior`
## ------------------------------------------------
data(us_fiscal_lsuw)
spec = specify_bsvar_sv$new(
data = us_fiscal_lsuw,
p = 4
)
spec$get_prior()
## ------------------------------------------------
## Method `specify_bsvar_sv$get_starting_values`
## ------------------------------------------------
data(us_fiscal_lsuw)
spec = specify_bsvar_sv$new(
data = us_fiscal_lsuw,
p = 4
)
spec$get_starting_values()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.