specify_bsvar_t | R Documentation |
The class BSVART presents complete specification for the BSVAR model with t-distributed structural shocks.
bsvars::BSVAR
-> BSVART
p
a non-negative integer specifying the autoregressive lag order of the model.
identification
an object IdentificationBSVARs with the identifying restrictions.
prior
an object PriorBSVART with the prior specification.
data_matrices
an object DataMatricesBSVAR with the data matrices.
starting_values
an object StartingValuesBSVART with the starting values.
adaptiveMH
a vector of two values setting the Robust Adaptive Metropolis sampler for df: target acceptance rate and adaptive rate.
new()
Create a new specification of the BSVAR model with t-distributed structural shocks, BSVART.
specify_bsvar_t$new( data, p = 1L, B, exogenous = NULL, stationary = rep(FALSE, ncol(data)) )
data
a (T+p)xN
matrix with time series data.
p
a positive integer providing model's autoregressive lag order.
B
a logical NxN
matrix containing value TRUE
for the
elements of the structural matrix B
to be estimated and value
FALSE
for exclusion restrictions to be set to zero.
exogenous
a (T+p)xd
matrix of exogenous variables.
stationary
an N
logical vector - its element set to
FALSE
sets the prior mean for the autoregressive parameters of the
N
th equation to the white noise process, otherwise to random walk.
A new complete specification for the bsvar model with t-distributed structural shocks, BSVART.
clone()
The objects of this class are cloneable with this method.
specify_bsvar_t$clone(deep = FALSE)
deep
Whether to make a deep clone.
estimate
, specify_posterior_bsvar_t
data(us_fiscal_lsuw)
spec = specify_bsvar_t$new(
data = us_fiscal_lsuw,
p = 4
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.