| specify_bsvar_t | R Documentation |
The class BSVART presents complete specification for the BSVAR model with t-distributed structural shocks.
bsvars::BSVAR -> BSVART
pa non-negative integer specifying the autoregressive lag order of the model.
identificationan object IdentificationBSVARs with the identifying restrictions.
prioran object PriorBSVART with the prior specification.
data_matricesan object DataMatricesBSVAR with the data matrices.
starting_valuesan object StartingValuesBSVART with the starting values.
adaptiveMHa vector of two values setting the Robust Adaptive Metropolis sampler for df: target acceptance rate and adaptive rate.
new()Create a new specification of the BSVAR model with t-distributed structural shocks, BSVART.
specify_bsvar_t$new( data, p = 1L, B, exogenous = NULL, stationary = rep(FALSE, ncol(data)) )
dataa (T+p)xN matrix with time series data.
pa positive integer providing model's autoregressive lag order.
Ba logical NxN matrix containing value TRUE for the
elements of the structural matrix B to be estimated and value
FALSE for exclusion restrictions to be set to zero.
exogenousa (T+p)xd matrix of exogenous variables.
stationaryan N logical vector - its element set to
FALSE sets the prior mean for the autoregressive parameters of the
Nth equation to the white noise process, otherwise to random walk.
A new complete specification for the bsvar model with t-distributed structural shocks, BSVART.
clone()The objects of this class are cloneable with this method.
specify_bsvar_t$clone(deep = FALSE)
deepWhether to make a deep clone.
estimate, specify_posterior_bsvar_t
data(us_fiscal_lsuw)
spec = specify_bsvar_t$new(
data = us_fiscal_lsuw,
p = 4
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.