| specify_prior_bsvar | R Documentation |
The class PriorBSVAR presents a prior specification for the homoskedastic bsvar model.
Aan NxK matrix, the mean of the normal prior distribution for the parameter matrix A.
A_V_inva KxK precision matrix of the normal prior distribution for each of
the row of the parameter matrix A. This precision matrix is equation invariant.
B_V_invan NxN precision matrix of the generalised-normal prior distribution
for the structural matrix B. This precision matrix is equation invariant.
B_nua positive integer greater of equal than N, a shape parameter of
the generalised-normal prior distribution for the structural matrix B.
hyper_nu_Ba positive scalar, the shape parameter of the inverted-gamma 2 prior
for the overall shrinkage parameter for matrix B.
hyper_a_Ba positive scalar, the shape parameter of the gamma prior
for the second-level hierarchy for the overall shrinkage parameter for matrix B.
hyper_s_BBa positive scalar, the scale parameter of the inverted-gamma 2 prior
for the third-level of hierarchy for overall shrinkage parameter for matrix B.
hyper_nu_BBa positive scalar, the shape parameter of the inverted-gamma 2 prior
for the third-level of hierarchy for overall shrinkage parameter for matrix B.
hyper_nu_Aa positive scalar, the shape parameter of the inverted-gamma 2 prior
for the overall shrinkage parameter for matrix A.
hyper_a_Aa positive scalar, the shape parameter of the gamma prior
for the second-level hierarchy for the overall shrinkage parameter for matrix A.
hyper_s_AAa positive scalar, the scale parameter of the inverted-gamma 2 prior
for the third-level of hierarchy for overall shrinkage parameter for matrix A.
hyper_nu_AAa positive scalar, the shape parameter of the inverted-gamma 2 prior
for the third-level of hierarchy for overall shrinkage parameter for matrix A.
new()Create a new prior specification PriorBSVAR.
specify_prior_bsvar$new(N, p, d = 0, stationary = rep(FALSE, N))
Na positive integer - the number of dependent variables in the model.
pa positive integer - the autoregressive lag order of the SVAR model.
da positive integer - the number of exogenous variables in the model.
stationaryan N logical vector - its element set to FALSE sets
the prior mean for the autoregressive parameters of the Nth equation to the white noise process,
otherwise to random walk.
A new prior specification PriorBSVAR.
# a prior for 3-variable example with one lag and stationary data prior = specify_prior_bsvar$new(N = 3, p = 1, stationary = rep(TRUE, 3)) prior$A # show autoregressive prior mean
get_prior()Returns the elements of the prior specification PriorBSVAR as a list.
specify_prior_bsvar$get_prior()
# a prior for 3-variable example with four lags prior = specify_prior_bsvar$new(N = 3, p = 4) prior$get_prior() # show the prior as list
clone()The objects of this class are cloneable with this method.
specify_prior_bsvar$clone(deep = FALSE)
deepWhether to make a deep clone.
prior = specify_prior_bsvar$new(N = 3, p = 1) # a prior for 3-variable example with one lag
prior$A # show autoregressive prior mean
## ------------------------------------------------
## Method `specify_prior_bsvar$new`
## ------------------------------------------------
# a prior for 3-variable example with one lag and stationary data
prior = specify_prior_bsvar$new(N = 3, p = 1, stationary = rep(TRUE, 3))
prior$A # show autoregressive prior mean
## ------------------------------------------------
## Method `specify_prior_bsvar$get_prior`
## ------------------------------------------------
# a prior for 3-variable example with four lags
prior = specify_prior_bsvar$new(N = 3, p = 4)
prior$get_prior() # show the prior as list
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.