| specify_prior_bsvar_mix | R Documentation |
The class PriorBSVARMIX presents a prior specification for the bsvar model with a zero-mean mixture of normals model for structural shocks.
bsvars::PriorBSVAR -> bsvars::PriorBSVARMSH -> PriorBSVARMIX
Aan NxK matrix, the mean of the normal prior distribution for the parameter matrix A.
A_V_inva KxK precision matrix of the normal prior distribution for each of the row of the parameter matrix A. This precision matrix is equation invariant.
B_V_invan NxN precision matrix of the generalised-normal prior distribution for the structural matrix B. This precision matrix is equation invariant.
B_nua positive integer greater of equal than N, a shape parameter of the generalised-normal prior distribution for the structural matrix B.
hyper_nu_Ba positive scalar, the shape parameter of the inverted-gamma 2 prior
for the overall shrinkage parameter for matrix B.
hyper_a_Ba positive scalar, the shape parameter of the gamma prior
for the second-level hierarchy for the overall shrinkage parameter for matrix B.
hyper_s_BBa positive scalar, the scale parameter of the inverted-gamma 2 prior
for the third-level of hierarchy for overall shrinkage parameter for matrix B.
hyper_nu_BBa positive scalar, the shape parameter of the inverted-gamma 2 prior
for the third-level of hierarchy for overall shrinkage parameter for matrix B.
hyper_nu_Aa positive scalar, the shape parameter of the inverted-gamma 2 prior
for the overall shrinkage parameter for matrix A.
hyper_a_Aa positive scalar, the shape parameter of the gamma prior
for the second-level hierarchy for the overall shrinkage parameter for matrix A.
hyper_s_AAa positive scalar, the scale parameter of the inverted-gamma 2 prior
for the third-level of hierarchy for overall shrinkage parameter for matrix A.
hyper_nu_AAa positive scalar, the shape parameter of the inverted-gamma 2 prior
for the third-level of hierarchy for overall shrinkage parameter for matrix A.
sigma_nua positive scalar, the shape parameter of the inverted-gamma 2 for mixture component-dependent variances of the structural shocks, \sigma^2_{n.s_t}.
sigma_sa positive scalar, the scale parameter of the inverted-gamma 2 for mixture component-dependent variances of the structural shocks, \sigma^2_{n.s_t}.
PR_TRan MxM matrix, the matrix of hyper-parameters of the row-specific Dirichlet prior distribution for the state probabilities the Markov process s_t. Its rows must be identical.
clone()The objects of this class are cloneable with this method.
specify_prior_bsvar_mix$clone(deep = FALSE)
deepWhether to make a deep clone.
prior = specify_prior_bsvar_mix$new(N = 3, p = 1, M = 2) # specify the prior
prior$A # show autoregressive prior mean
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.