verify_identification | R Documentation |
Computes the logarithm of Bayes factor(s) for the hypothesis
in which the model is not identified through heteroskedasticity of non-normality
using Savage-Dickey Density Ration (SDDR).
The hypothesis of no such identification, H_0
, is represented by
model-specific restrictions.Consult help files for individual classes of models
for details.
The logarithm of Bayes factor for this hypothesis can be computed using the SDDR
as the difference of the logarithm of the marginal posterior distribution
ordinate at the restriction less the log-marginal prior distribution ordinate
at the same point:
log p(H_0 | data) - log p(H_0)
Therefore, a negative value of the difference is the evidence against the lack of identification of the structural shock through heteroskedasticity or non-normality.
verify_identification(posterior)
posterior |
the estimation outcome obtained using |
An object of class SDDRid*
that is a list with components:
logSDDR
a vector with values of the logarithm of the Bayes factors
log_SDDR_se
a vector with numerical standard errors of the logarithm of
the Bayes factors reported in output element logSDDR
that are computed
based on 30 random sub-samples of the log-ordinates of the marginal posterior
and prior distributions.
Tomasz Woźniak wozniak.tom@pm.me
Lütkepohl, H., and Woźniak, T., (2020) Bayesian Inference for Structural Vector Autoregressions Identified by Markov-Switching Heteroskedasticity. Journal of Economic Dynamics and Control 113, 103862, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.jedc.2020.103862")}.
Lütkepohl, H., Shang, F., Uzeda, L., and Woźniak, T. (2024) Partial Identification of Heteroskedastic Structural VARs: Theory and Bayesian Inference. University of Melbourne Working Paper, 1–57, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.48550/arXiv.2404.11057")}.
verify_identification.PosteriorBSVAR
, verify_identification.PosteriorBSVARSV
,
verify_identification.PosteriorBSVARMIX
, verify_identification.PosteriorBSVARMSH
,
verify_identification.PosteriorBSVART
# simple workflow
############################################################
# upload data
data(us_fiscal_lsuw)
# specify the model and set seed
specification = specify_bsvar_sv$new(us_fiscal_lsuw, p = 1)
set.seed(123)
# estimate the model
posterior = estimate(specification, 10)
# verify heteroskedasticity
sddr = verify_identification(posterior)
# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
specify_bsvar_sv$new(p = 1) |>
estimate(S = 10) |>
verify_identification() -> sddr
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.