View source: R/prep_data_for_fit.R
prep_data_for_fit | R Documentation |
Prepare binned data and model for bunching estimation.
prep_data_for_fit( data_binned, zstar, binwidth, bins_l, bins_r, poly = 9, bins_excl_l = 0, bins_excl_r = 0, rn = NA, extra_fe = NA, correct_above_zu = FALSE )
data_binned |
dataframe of counts per bin |
zstar |
a numeric value for the the bunching point. |
binwidth |
a numeric value for the width of each bin. |
bins_l |
number of bins to left of zstar to use in analysis. |
bins_r |
number of bins to right of zstar to use in analysis. |
poly |
a numeric value for the order of polynomial for counterfactual fit. Default is 9. |
bins_excl_l |
number of bins to left of zstar to include in bunching region. Default is 0. |
bins_excl_r |
number of bins to right of zstar to include in bunching region. Default is 0. |
rn |
a numeric vector of (up to 2) round numbers to control for. Default includes no controls. |
extra_fe |
a numeric vector of bin values to control for using fixed effects. Default includes no controls. |
correct_above_zu |
if integration constraint correction is implemented, should counterfactual be shifted only above zu (upper bound of exclusion region)? Default is FALSE (i.e. shift from above zstar). |
data_binned
returns a list with the following:
data_binned |
The binned data with the extra columns necessary for model fitting, such as indicators for bunching region, fixed effects, etc. |
model_formula |
The formula used for model fitting. |
bunchit
data(bunching_data) binned_data <- bin_data(z_vector = bunching_data$kink, zstar = 10000, binwidth = 50, bins_l = 20, bins_r = 20) prepped_data <- prep_data_for_fit(binned_data, zstar = 10000, binwidth = 50, bins_l = 20, bins_r = 20, poly = 4, bins_excl_l = 2, bins_excl_r = 3, rn = c(250,500), extra_fe = 10200) head(prepped_data$data_binned) prepped_data$model_formula
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.