Nothing
###
### Tests for calibration curves produced using pseudo-values (calib.type = 'AJ')
###
### Run tests for pv.n.pctls = NULL and pv.group.vars = NULL
test_that("check calib_aj, pv.n.pctls = NULL and pv.group.vars = NULL", {
## Reduce to 50 individuals
# Extract the predicted transition probabilities out of state j = 1 for first 50 individuals
tp.pred <- tps0 |>
dplyr::filter(id %in% 1:50) |>
dplyr::filter(j == 1) |>
dplyr::select(any_of(paste("pstate", 1:6, sep = "")))
# Reduce ebmtcal to first 50 individuals
ebmtcal <- ebmtcal |> dplyr::filter(id %in% 1:50)
# Reduce msebmtcal.cmprsk to first 100 individuals
msebmtcal <- msebmtcal |> dplyr::filter(id %in% 1:50)
## Calculate observed event probabilities using transitions.out = NULL
dat.calib.aj.1 <- calib_msm(data.ms = msebmtcal,
data.raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp.pred = tp.pred,
calib.type = 'aj',
tp.pred.plot = NULL, transitions.out = NULL)
expect_equal(class(dat.calib.aj.1), c("calib_aj", "calib_msm"))
expect_equal(length(dat.calib.aj.1[["mean"]]), 6)
## Calculate observed event probabilities using transitions.out = NULL
dat.calib.aj.CI.1 <- calib_msm(data.ms = msebmtcal,
data.raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp.pred = tp.pred,
calib.type = 'aj',
CI = 95,
CI.R.boot = 10,
tp.pred.plot = NULL, transitions.out = NULL)
expect_equal(class(dat.calib.aj.CI.1), c("calib_aj", "calib_msm"))
expect_equal(length(dat.calib.aj.CI.1[["mean"]]), 6)
expect_equal(length(dat.calib.aj.CI.1[["mean"]][[1]]), 3)
expect_equal(as.numeric(dat.calib.aj.1[["mean"]][1]), as.numeric(dat.calib.aj.CI.1[["mean"]][[1]][1]))
expect_equal(as.numeric(dat.calib.aj.1[["mean"]][6]), as.numeric(dat.calib.aj.CI.1[["mean"]][[6]][1]))
})
### Run tets pv.n.pctls specified
test_that("check calib_pv output, pv.n.pctls specified", {
## Reduce to 50 individuals
# Extract the predicted transition probabilities out of state j = 1 for first 50 individuals
tp.pred <- tps0 |>
dplyr::filter(id %in% 1:50) |>
dplyr::filter(j == 1) |>
dplyr::select(any_of(paste("pstate", 1:6, sep = "")))
# Reduce ebmtcal to first 50 individuals
ebmtcal <- ebmtcal |> dplyr::filter(id %in% 1:50)
# Reduce msebmtcal.cmprsk to first 100 individuals
msebmtcal <- msebmtcal |> dplyr::filter(id %in% 1:50)
## Calculate observed event probabilities using transitions.out = NULL
dat.calib.aj.1 <- calib_msm(data.ms = msebmtcal,
data.raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp.pred = tp.pred,
calib.type = 'aj',
pv.n.pctls = 2,
tp.pred.plot = NULL, transitions.out = NULL)
expect_equal(class(dat.calib.aj.1), c("calib_aj", "calib_msm"))
expect_equal(length(dat.calib.aj.1[["mean"]]), 6)
## Calculate observed event probabilities using transitions.out = NULL
dat.calib.aj.CI.1 <- calib_msm(data.ms = msebmtcal,
data.raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp.pred = tp.pred,
calib.type = 'aj',
pv.n.pctls = 2,
CI = 95,
CI.R.boot = 10,
tp.pred.plot = NULL, transitions.out = NULL)
expect_equal(class(dat.calib.aj.CI.1), c("calib_aj", "calib_msm"))
expect_equal(length(dat.calib.aj.CI.1[["mean"]]), 6)
expect_equal(length(dat.calib.aj.CI.1[["mean"]][[1]]), 3)
expect_equal(as.numeric(dat.calib.aj.1[["mean"]][1]), as.numeric(dat.calib.aj.CI.1[["mean"]][[1]][1]))
expect_equal(as.numeric(dat.calib.aj.1[["mean"]][6]), as.numeric(dat.calib.aj.CI.1[["mean"]][[6]][1]))
})
### Run tests pv.group.vars specified
test_that("check calib_pv output, pv.group.vars specified", {
skip_on_cran()
## Reduce to 50 individuals
# Extract the predicted transition probabilities out of state j = 1 for first 50 individuals
tp.pred <- tps0 |>
dplyr::filter(id %in% 1:50) |>
dplyr::filter(j == 1) |>
dplyr::select(any_of(paste("pstate", 1:6, sep = "")))
# Reduce ebmtcal to first 50 individuals
ebmtcal <- ebmtcal |> dplyr::filter(id %in% 1:50)
# Reduce msebmtcal.cmprsk to first 100 individuals
msebmtcal <- msebmtcal |> dplyr::filter(id %in% 1:50)
## Calculate observed event probabilities using transitions.out = NULL
dat.calib.aj.1 <- calib_msm(data.ms = msebmtcal,
data.raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp.pred = tp.pred,
calib.type = 'aj',
pv.group.vars = c("year"),
tp.pred.plot = NULL, transitions.out = NULL)
expect_equal(class(dat.calib.aj.1), c("calib_aj", "calib_msm"))
expect_equal(length(dat.calib.aj.1[["mean"]]), 6)
## Calculate observed event probabilities using transitions.out = NULL
dat.calib.aj.CI.1 <- calib_msm(data.ms = msebmtcal,
data.raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp.pred = tp.pred,
calib.type = 'aj',
pv.group.vars = c("year"),
CI = 95,
CI.R.boot = 10,
tp.pred.plot = NULL, transitions.out = NULL)
expect_equal(class(dat.calib.aj.CI.1), c("calib_aj", "calib_msm"))
expect_equal(length(dat.calib.aj.CI.1[["mean"]]), 6)
expect_equal(length(dat.calib.aj.CI.1[["mean"]][[1]]), 3)
expect_equal(as.numeric(dat.calib.aj.1[["mean"]][1]), as.numeric(dat.calib.aj.CI.1[["mean"]][[1]][1]))
expect_equal(as.numeric(dat.calib.aj.1[["mean"]][6]), as.numeric(dat.calib.aj.CI.1[["mean"]][[6]][1]))
})
### Run tests pv.group.vars and pv.n.pctls specified
test_that("check calib_pv output, pv.group.vars and pv.n.pctls specified", {
skip_on_cran()
## Reduce to 50 individuals
# Extract the predicted transition probabilities out of state j = 1 for first 50 individuals
tp.pred <- tps0 |>
dplyr::filter(id %in% 1:100) |>
dplyr::filter(j == 1) |>
dplyr::select(any_of(paste("pstate", 1:6, sep = "")))
# Reduce ebmtcal to first 50 individuals
ebmtcal <- ebmtcal |> dplyr::filter(id %in% 1:100)
# Reduce msebmtcal.cmprsk to first 100 individuals
msebmtcal <- msebmtcal |> dplyr::filter(id %in% 1:100)
## Calculate observed event probabilities using transitions.out = NULL
dat.calib.aj.1 <- calib_msm(data.ms = msebmtcal,
data.raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp.pred = tp.pred,
calib.type = 'aj',
pv.n.pctls = 2,
pv.group.vars = c("year"),
tp.pred.plot = NULL, transitions.out = NULL)
expect_equal(class(dat.calib.aj.1), c("calib_aj", "calib_msm"))
expect_equal(length(dat.calib.aj.1[["mean"]]), 6)
## Calculate observed event probabilities using transitions.out = NULL
dat.calib.aj.CI.1 <- calib_msm(data.ms = msebmtcal,
data.raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp.pred = tp.pred,
calib.type = 'aj',
pv.n.pctls = 2,
pv.group.vars = c("year"),
CI = 95,
CI.R.boot = 10,
tp.pred.plot = NULL, transitions.out = NULL)
expect_equal(class(dat.calib.aj.CI.1), c("calib_aj", "calib_msm"))
expect_equal(length(dat.calib.aj.CI.1[["mean"]]), 6)
expect_equal(length(dat.calib.aj.CI.1[["mean"]][[1]]), 3)
expect_equal(as.numeric(dat.calib.aj.1[["mean"]][1]), as.numeric(dat.calib.aj.CI.1[["mean"]][[1]][1]))
expect_equal(as.numeric(dat.calib.aj.1[["mean"]][6]), as.numeric(dat.calib.aj.CI.1[["mean"]][[6]][1]))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.