Nothing
###
### Tests for calibration curves produced using pseudo-values (calib.type = 'AJ')
###
### Run tests for pv_n_pctls = NULL and pv_group_vars = NULL
test_that("check calib_aj, pv_n_pctls = NULL and pv_group_vars = NULL", {
## Reduce to 50 individuals
# Extract the predicted transition probabilities out of state j = 1 for first 50 individuals
tp_pred <- tps0 |>
dplyr::filter(id %in% 1:50) |>
dplyr::filter(j == 1) |>
dplyr::select(any_of(paste("pstate", 1:6, sep = "")))
# Reduce ebmtcal to first 50 individuals
ebmtcal <- ebmtcal |> dplyr::filter(id %in% 1:50)
# Reduce msebmtcal_cmprsk to first 100 individuals
msebmtcal <- msebmtcal |> dplyr::filter(id %in% 1:50)
## Calculate observed event probabilities using transitions_out = NULL
dat_calib_aj_1 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'aj',
tp_pred_plot = NULL, transitions_out = NULL))
expect_equal(class(dat_calib_aj_1), c("calib_aj", "calib_msm"))
expect_equal(length(dat_calib_aj_1[["mean"]]), 6)
## Calculate observed event probabilities using transitions_out = NULL
dat_calib_aj_CI_1 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'aj',
CI = 95,
CI_R_boot = 10,
tp_pred_plot = NULL, transitions_out = NULL))
expect_equal(class(dat_calib_aj_CI_1), c("calib_aj", "calib_msm"))
expect_equal(length(dat_calib_aj_CI_1[["mean"]]), 6)
expect_equal(length(dat_calib_aj_CI_1[["mean"]][[1]]), 3)
expect_equal(as.numeric(dat_calib_aj_1[["mean"]][1]), as.numeric(dat_calib_aj_CI_1[["mean"]][[1]][1]))
expect_equal(as.numeric(dat_calib_aj_1[["mean"]][6]), as.numeric(dat_calib_aj_CI_1[["mean"]][[6]][1]))
})
### Run tets pv_n_pctls specified
test_that("check calib_pv output, pv_n_pctls specified", {
## Reduce to 50 individuals
# Extract the predicted transition probabilities out of state j = 1 for first 50 individuals
tp_pred <- tps0 |>
dplyr::filter(id %in% 1:50) |>
dplyr::filter(j == 1) |>
dplyr::select(any_of(paste("pstate", 1:6, sep = "")))
# Reduce ebmtcal to first 50 individuals
ebmtcal <- ebmtcal |> dplyr::filter(id %in% 1:50)
# Reduce msebmtcal_cmprsk to first 100 individuals
msebmtcal <- msebmtcal |> dplyr::filter(id %in% 1:50)
## Calculate observed event probabilities using transitions_out = NULL
dat_calib_aj_1 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'aj',
pv_n_pctls = 2,
tp_pred_plot = NULL, transitions_out = NULL))
expect_equal(class(dat_calib_aj_1), c("calib_aj", "calib_msm"))
expect_equal(length(dat_calib_aj_1[["mean"]]), 6)
## Calculate observed event probabilities using transitions_out = NULL
dat_calib_aj_CI_1 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'aj',
pv_n_pctls = 2,
CI = 95,
CI_R_boot = 10,
tp_pred_plot = NULL, transitions_out = NULL))
expect_equal(class(dat_calib_aj_CI_1), c("calib_aj", "calib_msm"))
expect_equal(length(dat_calib_aj_CI_1[["mean"]]), 6)
expect_equal(length(dat_calib_aj_CI_1[["mean"]][[1]]), 3)
expect_equal(as.numeric(dat_calib_aj_1[["mean"]][1]), as.numeric(dat_calib_aj_CI_1[["mean"]][[1]][1]))
expect_equal(as.numeric(dat_calib_aj_1[["mean"]][6]), as.numeric(dat_calib_aj_CI_1[["mean"]][[6]][1]))
})
### Run tests pv_group_vars specified
test_that("check calib_pv output, pv_group_vars specified", {
skip_on_cran()
## Reduce to 50 individuals
# Extract the predicted transition probabilities out of state j = 1 for first 50 individuals
tp_pred <- tps0 |>
dplyr::filter(id %in% 1:50) |>
dplyr::filter(j == 1) |>
dplyr::select(any_of(paste("pstate", 1:6, sep = "")))
# Reduce ebmtcal to first 50 individuals
ebmtcal <- ebmtcal |> dplyr::filter(id %in% 1:50)
# Reduce msebmtcal_cmprsk to first 100 individuals
msebmtcal <- msebmtcal |> dplyr::filter(id %in% 1:50)
## Calculate observed event probabilities using transitions_out = NULL
dat_calib_aj_1 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'aj',
pv_group_vars = c("year"),
tp_pred_plot = NULL, transitions_out = NULL))
expect_equal(class(dat_calib_aj_1), c("calib_aj", "calib_msm"))
expect_equal(length(dat_calib_aj_1[["mean"]]), 6)
## Calculate observed event probabilities using transitions_out = NULL
dat_calib_aj_CI_1 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'aj',
pv_group_vars = c("year"),
CI = 95,
CI_R_boot = 10,
tp_pred_plot = NULL, transitions_out = NULL))
expect_equal(class(dat_calib_aj_CI_1), c("calib_aj", "calib_msm"))
expect_equal(length(dat_calib_aj_CI_1[["mean"]]), 6)
expect_equal(length(dat_calib_aj_CI_1[["mean"]][[1]]), 3)
expect_equal(as.numeric(dat_calib_aj_1[["mean"]][1]), as.numeric(dat_calib_aj_CI_1[["mean"]][[1]][1]))
expect_equal(as.numeric(dat_calib_aj_1[["mean"]][6]), as.numeric(dat_calib_aj_CI_1[["mean"]][[6]][1]))
})
### Run tests pv_group_vars and pv_n_pctls specified
test_that("check calib_pv output, pv_group_vars and pv_n_pctls specified ", {
skip_on_cran()
## Set seed
set.seed(101)
## Reduce to 50 individuals
# Extract the predicted transition probabilities out of state j = 1 for first 50 individuals
tp_pred <- tps0 |>
dplyr::filter(id %in% 1:100) |>
dplyr::filter(j == 1) |>
dplyr::select(any_of(paste("pstate", 1:6, sep = "")))
# Reduce ebmtcal to first 50 individuals
ebmtcal <- ebmtcal |> dplyr::filter(id %in% 1:100)
# Reduce msebmtcal_cmprsk to first 100 individuals
msebmtcal <- msebmtcal |> dplyr::filter(id %in% 1:100)
## Calculate observed event probabilities using transitions_out = NULL
dat_calib_aj_1 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'aj',
pv_n_pctls = 2,
pv_group_vars = c("year"),
tp_pred_plot = NULL, transitions_out = NULL))
expect_equal(class(dat_calib_aj_1), c("calib_aj", "calib_msm"))
expect_equal(length(dat_calib_aj_1[["mean"]]), 6)
## Calculate observed event probabilities using transitions_out = NULL
dat_calib_aj_CI_1 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'aj',
pv_n_pctls = 2,
pv_group_vars = c("year"),
CI = 95,
CI_R_boot = 10,
tp_pred_plot = NULL, transitions_out = NULL))
expect_equal(class(dat_calib_aj_CI_1), c("calib_aj", "calib_msm"))
expect_equal(length(dat_calib_aj_CI_1[["mean"]]), 6)
expect_equal(length(dat_calib_aj_CI_1[["mean"]][[1]]), 3)
expect_equal(as.numeric(dat_calib_aj_1[["mean"]][1]), as.numeric(dat_calib_aj_CI_1[["mean"]][[1]][1]))
expect_equal(as.numeric(dat_calib_aj_1[["mean"]][6]), as.numeric(dat_calib_aj_CI_1[["mean"]][[6]][1]))
})
### Finish tests
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.