Nothing
###
### Tests for calibration curves produced using pseudo-values (calib_type = 'pv')
###
### Warnings are suppressed because these are expected due to small sample size (neccesary for tests to run if reasonable time)
### Run tests for when curve_type = "loess" and CI_type = "bootstrap"_
test_that("check calib_pv output, (j = 1, s = 0), curve_type = loess, CI_type = bootstrap", {
skip_on_cran()
## Reduce to 50 individuals
# Extract the predicted transition probabilities out of state j = 1 for first 50 individuals
tp_pred <- tps0 |>
dplyr::filter(id %in% 1:50) |>
dplyr::filter(j == 1) |>
dplyr::select(any_of(paste("pstate", 1:6, sep = "")))
# Reduce ebmtcal to first 50 individuals
ebmtcal <- ebmtcal |> dplyr::filter(id %in% 1:50)
# Reduce msebmtcal_cmprsk to first 100 individuals
msebmtcal <- msebmtcal |> dplyr::filter(id %in% 1:50)
## Calculate observed event probabilities using transitions_out = NULL
dat_calib_pv_1 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'pv',
curve_type = "loess",
tp_pred_plot = NULL, transitions_out = NULL))
expect_equal(class(dat_calib_pv_1), c("calib_pv", "calib_msm"))
expect_equal(dat_calib_pv_1[["metadata"]][["curve_type"]], "loess")
expect_equal(ncol(dat_calib_pv_1[["plotdata"]][[1]]), 4)
expect_no_error(summary(dat_calib_pv_1))
## Check same results when just calculating pseudo-values for first three individuals
dat_calib_pv_ids_1 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'pv',
pv_ids = 1:3,
tp_pred_plot = NULL, transitions_out = NULL))
expect_equal(dat_calib_pv_1[["plotdata"]][[1]][1:3, "pv"], dat_calib_pv_ids_1[[1]][,2])
expect_equal(dat_calib_pv_1[["plotdata"]][[6]][1:3, "pv"], dat_calib_pv_ids_1[[1]][,7])
## Calculate observed event probabilities with a confidence interval using bootstrapping and transitions_out = NULL
# expect_warning(calib_msm(data_ms = msebmtcal,
# data_raw = ebmtcal,
# j = 1,
# s = 0,
# t = 1826,
# tp_pred = tp_pred,
# calib_type = 'pv',
# curve_type = "loess",
# CI = 95, CI_type = "bootstrap", CI_R_boot = 3,
# tp_pred_plot = NULL, transitions_out = c(1)))
dat_calib_pv_4 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'pv',
curve_type = "loess",
CI = 95, CI_type = "bootstrap", CI_R_boot = 3,
tp_pred_plot = NULL, transitions_out = c(1,2)))
expect_equal(class(dat_calib_pv_4), c("calib_pv", "calib_msm"))
expect_equal(ncol(dat_calib_pv_4[["plotdata"]][[1]]), 5)
expect_equal(dat_calib_pv_1[["plotdata"]][[1]]$obs, dat_calib_pv_4[["plotdata"]][[1]]$obs)
expect_equal(dat_calib_pv_1[["plotdata"]][[1]]$pred, dat_calib_pv_4[["plotdata"]][[1]]$pred)
expect_equal(dat_calib_pv_1[["plotdata"]][[2]]$obs, dat_calib_pv_4[["plotdata"]][[2]]$obs)
expect_equal(dat_calib_pv_1[["plotdata"]][[2]]$pred, dat_calib_pv_4[["plotdata"]][[2]]$pred)
expect_no_error(summary(dat_calib_pv_4))
## Calculate observed event probabilities with a confidence interval using bootstrapping, transitions_out = NULL and defining tp_pred_plot manually
### Create landmark ids and extract tp_pred_plot correct
id_lmk <- 1:50
tp_pred_plot <- tps0 |>
dplyr::filter(id %in% id_lmk) |>
dplyr::filter(j == 1) |>
dplyr::select(any_of(paste("pstate", 1:6, sep = "")))
## No confidence interval
dat_calib_pv_9 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'pv',
curve_type = "loess",
tp_pred_plot = tp_pred_plot, transitions_out = NULL))
## Should be one less column in plotdata (no patient ids)
expect_equal(class(dat_calib_pv_9), c("calib_pv", "calib_msm"))
expect_equal(ncol(dat_calib_pv_9[["plotdata"]][[1]]), 3)
expect_equal(nrow(dat_calib_pv_9[["plotdata"]][[1]]), 50)
expect_equal(dat_calib_pv_1[["plotdata"]][[1]]$obs, dat_calib_pv_9[["plotdata"]][[1]]$obs)
expect_equal(dat_calib_pv_1[["plotdata"]][[1]]$pred, dat_calib_pv_9[["plotdata"]][[1]]$pred)
expect_no_error(summary(dat_calib_pv_9))
## With confidence interval
dat_calib_pv_10 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'pv',
curve_type = "loess",
CI = 95, CI_type = "bootstrap", CI_R_boot = 3,
tp_pred_plot = tp_pred_plot, transitions_out = NULL))
expect_equal(class(dat_calib_pv_10), c("calib_pv", "calib_msm"))
expect_equal(ncol(dat_calib_pv_10[["plotdata"]][[1]]), 4)
expect_equal(nrow(dat_calib_pv_10[["plotdata"]][[1]]), 50)
expect_equal(dat_calib_pv_1[["plotdata"]][[1]]$obs, dat_calib_pv_10[["plotdata"]][[1]]$obs)
expect_equal(dat_calib_pv_1[["plotdata"]][[1]]$pred, dat_calib_pv_10[["plotdata"]][[1]]$pred)
expect_no_error(summary(dat_calib_pv_10))
})
### Run tests for when curve_type = "loess" and CI_type = "bootstrap"_
test_that("check calib_pv output, (j = 1, s = 0), curve_type = loess, CI_type = parametric", {
## Reduce to 50 individuals
# Extract the predicted transition probabilities out of state j = 1 for first 50 individuals
tp_pred <- tps0 |>
dplyr::filter(id %in% 1:50) |>
dplyr::filter(j == 1) |>
dplyr::select(any_of(paste("pstate", 1:6, sep = "")))
# Reduce ebmtcal to first 50 individuals
ebmtcal <- ebmtcal |> dplyr::filter(id %in% 1:50)
# Reduce msebmtcal_cmprsk to first 100 individuals
msebmtcal <- msebmtcal |> dplyr::filter(id %in% 1:50)
## Calculate observed event probabilities using transitions_out = NULL
dat_calib_pv_1 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'pv',
curve_type = "loess",
tp_pred_plot = NULL, transitions_out = NULL))
expect_equal(dat_calib_pv_1[["metadata"]][["curve_type"]], "loess")
expect_equal(ncol(dat_calib_pv_1[["plotdata"]][[1]]), 4)
expect_no_error(summary(dat_calib_pv_1))
## Calculate observed event probabilities with a confidence interval using parametric approach
dat_calib_pv_5 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'pv',
curve_type = "loess",
CI = 95, CI_type = "parametric",
tp_pred_plot = NULL, transitions_out = c(1,2)))
expect_equal(ncol(dat_calib_pv_5[["plotdata"]][[1]]), 6)
expect_equal(dat_calib_pv_1[["plotdata"]][[1]]$obs, dat_calib_pv_5[["plotdata"]][[1]]$obs)
expect_equal(dat_calib_pv_1[["plotdata"]][[1]]$pred, dat_calib_pv_5[["plotdata"]][[1]]$pred)
expect_equal(dat_calib_pv_1[["plotdata"]][[2]]$obs, dat_calib_pv_5[["plotdata"]][[2]]$obs)
expect_equal(dat_calib_pv_1[["plotdata"]][[2]]$pred, dat_calib_pv_5[["plotdata"]][[2]]$pred)
expect_no_error(summary(dat_calib_pv_5))
## Calculate observed event probabilities with a confidence interval using bootstrapping, transitions_out = NULL and defining tp_pred_plot manually
### Create landmark ids and extract tp_pred_plot correct
id_lmk <- 1:50
tp_pred_plot <- tps0 |>
dplyr::filter(id %in% id_lmk) |>
dplyr::filter(j == 1) |>
dplyr::select(any_of(paste("pstate", 1:6, sep = "")))
## With confidence interval
dat_calib_pv_10 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'pv',
curve_type = "loess",
CI = 95, CI_type = "parametric",
tp_pred_plot = tp_pred_plot, transitions_out = NULL))
str(dat_calib_pv_10)
expect_equal(ncol(dat_calib_pv_10[["plotdata"]][[1]]), 5)
expect_equal(dat_calib_pv_1[["plotdata"]][[1]]$obs, dat_calib_pv_10[["plotdata"]][[1]]$obs)
expect_equal(dat_calib_pv_1[["plotdata"]][[1]]$pred, dat_calib_pv_10[["plotdata"]][[1]]$pred)
expect_no_error(summary(dat_calib_pv_10))
})
### Run tests for when curve_type = "rcs" and CI_type = "bootstrap" (not rerunning all of them for curve_type = rcs)
test_that("check calib_pv output, (j = 1, s = 0), curve_type = rcs, CI_type = bootstrap_", {
skip_on_cran()
## Reduce to 150 individuals
# Extract the predicted transition probabilities out of state j = 1 for first 150 individuals
tp_pred <- tps0 |>
dplyr::filter(id %in% 1:150) |>
dplyr::filter(j == 1) |>
dplyr::select(any_of(paste("pstate", 1:6, sep = "")))
# Reduce ebmtcal to first 150 individuals
ebmtcal <- ebmtcal |> dplyr::filter(id %in% 1:150)
# Reduce msebmtcal_cmprsk to first 150 individuals
msebmtcal <- msebmtcal |> dplyr::filter(id %in% 1:150)
## Calculate observed event probabilities using transitions_out = NULL
dat_calib_pv_1 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'pv',
curve_type = "rcs",
tp_pred_plot = NULL, transitions_out = c(1)))
expect_equal(dat_calib_pv_1[["metadata"]][["curve_type"]], "rcs")
expect_equal(ncol(dat_calib_pv_1[["plotdata"]][[1]]), 4)
expect_no_error(summary(dat_calib_pv_1))
## Calculate observed event probabilities with a confidence interval using bootstrapping
dat_calib_pv_4 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'pv',
curve_type = "rcs",
CI = 95, CI_type = "bootstrap", CI_R_boot = 3,
tp_pred_plot = NULL, transitions_out = c(1)))
expect_equal(ncol(dat_calib_pv_4[["plotdata"]][[1]]), 5)
expect_equal(dat_calib_pv_1[["plotdata"]][[1]]$obs, dat_calib_pv_4[["plotdata"]][[1]]$obs)
expect_equal(dat_calib_pv_1[["plotdata"]][[1]]$pred, dat_calib_pv_4[["plotdata"]][[1]]$pred)
expect_no_error(summary(dat_calib_pv_4))
})
### Run tests for when curve_type = "rcs" and CI_type = "parametric" (not rerunning all of them for curve_type = rcs)
test_that("check calib_pv output, (j = 1, s = 0), curve_type = rcs, CI_type = bootstrap_", {
skip_on_cran()
## Reduce to 150 individuals
# Extract the predicted transition probabilities out of state j = 1 for first 150 individuals
tp_pred <- tps0 |>
dplyr::filter(id %in% 1:150) |>
dplyr::filter(j == 1) |>
dplyr::select(any_of(paste("pstate", 1:6, sep = "")))
# Reduce ebmtcal to first 150 individuals
ebmtcal <- ebmtcal |> dplyr::filter(id %in% 1:150)
# Reduce msebmtcal_cmprsk to first 150 individuals
msebmtcal <- msebmtcal |> dplyr::filter(id %in% 1:150)
## Calculate observed event probabilities using transitions_out = NULL
dat_calib_pv_1 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'pv',
curve_type = "rcs",
tp_pred_plot = NULL, transitions_out = c(1)))
expect_equal(dat_calib_pv_1[["metadata"]][["curve_type"]], "rcs")
expect_equal(ncol(dat_calib_pv_1[["plotdata"]][[1]]), 4)
expect_no_error(summary(dat_calib_pv_1))
## Calculate observed event probabilities with a confidence interval using parametric approach
dat_calib_pv_4 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'pv',
curve_type = "rcs",
CI = 95, CI_type = "parametric",
tp_pred_plot = NULL, transitions_out = c(1)))
expect_equal(ncol(dat_calib_pv_4[["plotdata"]][[1]]), 6)
expect_equal(dat_calib_pv_1[["plotdata"]][[1]]$obs, dat_calib_pv_4[["plotdata"]][[1]]$obs)
expect_equal(dat_calib_pv_1[["plotdata"]][[1]]$pred, dat_calib_pv_4[["plotdata"]][[1]]$pred)
expect_no_error(summary(dat_calib_pv_4))
})
### Add some tests for when each of group_vars and pv_n_pctls are specified
test_that("check calib_pv output, (j = 1, s = 0), groups_vars and pv_n_pctls specified", {
skip_on_cran()
## Reduce to 50 individuals
# Extract the predicted transition probabilities out of state j = 1 for first 100 individuals
tp_pred <- tps0 |>
dplyr::filter(id %in% 1:50) |>
dplyr::filter(j == 1) |>
dplyr::select(any_of(paste("pstate", 1:6, sep = "")))
# Reduce ebmtcal to first 50 individuals
ebmtcal <- ebmtcal |> dplyr::filter(id %in% 1:50)
# Reduce msebmtcal_cmprsk to first 100 individuals
msebmtcal <- msebmtcal |> dplyr::filter(id %in% 1:50)
## Calculate observed event probabilities when both pv_group_vars and pv_n_pctls are specified
dat_calib_pv_1 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'pv',
curve_type = "loess",
loess_span = 1,
loess_degree = 1,
pv_group_vars = c("year"),
pv_n_pctls = 2,
tp_pred_plot = NULL, transitions_out = NULL))
expect_equal(ncol(dat_calib_pv_1[["plotdata"]][[1]]), 4)
expect_equal(length(dat_calib_pv_1[["plotdata"]]), 6)
## Check same results when just calculating pseudo-values for first three individuals
dat_calib_pv_ids_1 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'pv',
pv_group_vars = c("year"),
pv_n_pctls = 2,
pv_ids = 1:3,
tp_pred_plot = NULL, transitions_out = NULL))
expect_equal(dat_calib_pv_1[["plotdata"]][[1]][1:3, "pv"], dat_calib_pv_ids_1[[1]][,2])
expect_equal(dat_calib_pv_1[["plotdata"]][[6]][1:3, "pv"], dat_calib_pv_ids_1[[1]][,7])
## Check same results when just calculating pseudo-values for first three individuals, but specify transitions 1 and 6
dat_calib_pv_ids_1_tout <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'pv',
pv_group_vars = c("year"),
pv_n_pctls = 2,
pv_ids = 1:3,
tp_pred_plot = NULL, transitions_out = c(1,6)))
expect_equal(dat_calib_pv_ids_1_tout[[1]][,2], dat_calib_pv_ids_1[[1]][,2])
expect_equal(dat_calib_pv_ids_1_tout[[1]][,3], dat_calib_pv_ids_1[[1]][,7])
expect_equal(ncol(dat_calib_pv_ids_1_tout[["plotdata"]]), 3)
## Calculate observed event probabilities for pv_group_vars
dat_calib_pv_2 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'pv',
curve_type = "loess",
loess_span = 1,
loess_degree = 1,
pv_group_vars = c("year"),
tp_pred_plot = NULL, transitions_out = NULL))
expect_equal(ncol(dat_calib_pv_2[["plotdata"]][[1]]), 4)
expect_equal(length(dat_calib_pv_2[["plotdata"]]), 6)
## Check same results when just calculating pseudo-values for first three individuals
dat_calib_pv_ids_2 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'pv',
pv_group_vars = c("year"),
pv_ids = 1:3,
tp_pred_plot = NULL, transitions_out = NULL))
expect_equal(dat_calib_pv_2[["plotdata"]][[1]][1:3, "pv"], dat_calib_pv_ids_2[[1]][,2])
expect_equal(dat_calib_pv_2[["plotdata"]][[6]][1:3, "pv"], dat_calib_pv_ids_2[[1]][,7])
## No need to test for transitions_out when pv_n_pctls not specified, because there are no computational gains and
## pseudo-values are just calculated for all states anyway_
## Calculate observed event probabilities for pv_n_pctls
dat_calib_pv_3 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'pv',
curve_type = "loess",
loess_span = 1,
loess_degree = 1,
pv_n_pctls = 2,
tp_pred_plot = NULL, transitions_out = NULL))
expect_equal(ncol(dat_calib_pv_3[["plotdata"]][[1]]), 4)
expect_equal(length(dat_calib_pv_3[["plotdata"]]), 6)
## Check same results when just calculating pseudo-values for first three individuals
dat_calib_pv_ids_3 <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'pv',
pv_n_pctls = 2,
pv_ids = 1:3,
tp_pred_plot = NULL, transitions_out = NULL))
expect_equal(dat_calib_pv_3[["plotdata"]][[1]][1:3, "pv"], dat_calib_pv_ids_3[[1]][,2])
expect_equal(dat_calib_pv_3[["plotdata"]][[6]][1:3, "pv"], dat_calib_pv_ids_3[[1]][,7])
## Check same results when just calculating pseudo-values for first three individuals, but specify transitions 1 and 6
dat_calib_pv_ids_3_tout <- suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'pv',
pv_n_pctls = 2,
pv_ids = 1:3,
tp_pred_plot = NULL, transitions_out = c(1,6)))
expect_equal(dat_calib_pv_ids_3_tout[[1]][,2], dat_calib_pv_ids_3[[1]][,2])
expect_equal(dat_calib_pv_ids_3_tout[[1]][,3], dat_calib_pv_ids_3[[1]][,7])
expect_equal(ncol(dat_calib_pv_ids_3_tout[["plotdata"]]), 3)
})
### Add some tests where we expect errors, if requesting things that aren't possible
test_that("check calib_pv output, (j = 1, s = 0), cause errors", {
skip_on_cran()
## Reduce to 50 individuals
# Extract the predicted transition probabilities out of state j = 1 for first 100 individuals
tp_pred <- tps0 |>
dplyr::filter(id %in% 1:50) |>
dplyr::filter(j == 1) |>
dplyr::select(any_of(paste("pstate", 1:6, sep = "")))
# Reduce ebmtcal to first 50 individuals
ebmtcal <- ebmtcal |> dplyr::filter(id %in% 1:50)
# Reduce msebmtcal_cmprsk to first 100 individuals
msebmtcal <- msebmtcal |> dplyr::filter(id %in% 1:50)
## Request bootstrap confidence interval and don't give number of bootstrap replicates (for either rcs or parametric)
expect_error(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'pv',
curve_type = "loess",
CI = 95,
CI_type = "bootstrap",
tp_pred_plot = NULL, transitions_out = NULL))
expect_error(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'pv',
curve_type = "rcs",
CI = 95,
CI_type = "bootstrap",
tp_pred_plot = NULL, transitions_out = NULL))
})
test_that("check calib_pv output, (j = 3, s = 100), pv_group_vars defined", {
skip_on_cran()
## Extract relevant predicted risks from tps100
tp_pred <- dplyr::select(dplyr::filter(tps100, j == 3), any_of(paste("pstate", 1:6, sep = "")))
## Calculate observed event probabilities
dat_calib_pv <-
suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j=3,
s=100,
t = 1826,
tp_pred = tp_pred, calib_type = 'pv',
curve_type = "rcs",
rcs_nk = 3,
pv_group_vars = c("year")))
expect_type(dat_calib_pv, "list")
expect_equal(class(dat_calib_pv), c("calib_pv", "calib_msm"))
expect_length(dat_calib_pv[["plotdata"]], 4)
expect_length(dat_calib_pv[["plotdata"]][["state3"]]$id, 413)
expect_length(dat_calib_pv[["plotdata"]][["state6"]]$id, 413)
expect_error(dat_calib_pv[["plotdata"]][[6]])
expect_false(dat_calib_pv[["metadata"]]$CI)
})
test_that("check calib_pv output, (j = 3, s = 100), pv_n_pctls defined", {
skip_on_cran()
## Extract relevant predicted risks from tps100
tp_pred <- dplyr::select(dplyr::filter(tps100, j == 3), any_of(paste("pstate", 1:6, sep = "")))
## Calculate observed event probabilities
dat_calib_pv <-
suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j=3,
s=100,
t = 1826,
tp_pred = tp_pred, calib_type = 'pv',
curve_type = "rcs",
rcs_nk = 3,
pv_n_pctls = 2))
expect_type(dat_calib_pv, "list")
expect_equal(class(dat_calib_pv), c("calib_pv", "calib_msm"))
expect_length(dat_calib_pv[["plotdata"]], 4)
expect_length(dat_calib_pv[["plotdata"]][["state3"]]$id, 413)
expect_length(dat_calib_pv[["plotdata"]][["state6"]]$id, 413)
expect_error(dat_calib_pv[["plotdata"]][[6]])
expect_false(dat_calib_pv[["metadata"]]$CI)
})
test_that("check calib_pv output, (j = 3, s = 100), pv_group_vars and pv_n_pctls defined", {
skip_on_cran()
## Extract relevant predicted risks from tps100
tp_pred <- dplyr::select(dplyr::filter(tps100, j == 3), any_of(paste("pstate", 1:6, sep = "")))
## Calculate observed event probabilities
dat_calib_pv <-
suppressWarnings(calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j=3,
s=100,
t = 1826,
tp_pred = tp_pred, calib_type = 'pv',
curve_type = "rcs",
rcs_nk = 3,
pv_group_vars = c("year"),
pv_n_pctls = 2))
expect_type(dat_calib_pv, "list")
expect_equal(class(dat_calib_pv), c("calib_pv", "calib_msm"))
expect_length(dat_calib_pv[["plotdata"]], 4)
expect_length(dat_calib_pv[["plotdata"]][["state3"]]$id, 413)
expect_length(dat_calib_pv[["plotdata"]][["state6"]]$id, 413)
expect_error(dat_calib_pv[["plotdata"]][[6]])
expect_false(dat_calib_pv[["metadata"]]$CI)
})
test_that("check calib_pv output, (j = 1, s = 0), pv_precalc", {
skip_on_cran()
## Extract relevant predicted risks from tps100
tp_pred <- dplyr::select(dplyr::filter(tps0, j == 1), any_of(paste("pstate", 1:6, sep = "")))
## Define pv_precalc to be the estimated predicted probabilities
pv_precalc <- tp_pred
## Calculate observed event probabilities
dat_calib_pv <-
calib_msm(data_ms = msebmtcal,
data_raw = ebmtcal,
j = 1,
s = 0,
t = 1826,
tp_pred = tp_pred,
calib_type = 'pv',
pv_precalc = tp_pred,
curve_type = "rcs",
rcs_nk = 3)
expect_type(dat_calib_pv, "list")
expect_equal(class(dat_calib_pv), c("calib_pv", "calib_msm"))
expect_length(dat_calib_pv[["plotdata"]], 6)
expect_length(dat_calib_pv[["plotdata"]][["state3"]]$id, 2279)
expect_length(dat_calib_pv[["plotdata"]][["state6"]]$id, 2279)
expect_false(dat_calib_pv[["metadata"]]$CI)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.