PlotLocalSens: Plot results of CalculateLocalSens function In capm: Companion Animal Population Management

Description

Plot results of the `CalculateLocalSens` function.

Usage

 ```1 2 3 4``` ```PlotLocalSens(local.out = NULL, x.sens = "Time", y.sens = "Sensitivity", y.ind = c("L1", "L2", "Mean", "Min", "Max"), bar.colors = "DarkRed", label.size = 10, x.axis.angle = 90, type = 1) ```

Arguments

 `local.out` output from `CalculateLocalSens` function. `x.sens` string with the name for the x axis. `y.sens` string with the name for the y axis of the sensitivity functions (when `type = 6`). `y.ind` string with the name for the y axis of the parameter importance indices. `bar.colors` any valid specification of a color. `label.size` a number to specify the size of axes labels and text. `x.axis.angle` a number with angle of rotation for x axis text. Passed to `angle` argument of `element_text`. `type` a number to define the type of graphical output. `1`: importance index L1; `2`: importance index L2; `3`: mean of sensitivity functions; `5`: minimum of sensitivity functions; and `5`: maximum of sensitivity functions; `6`: sensitivity functions and all importance indices are ploted.

Details

Font size of saved plots is usually different to the font size seen in graphic browsers. Before changing font sizes, see the final result in saved (or preview) plots.

References

Chang W (2012). R Graphics Cookbook. O'Reilly Media, Inc.

Soetaert K, Cash J and Mazzia F (2012). Solving differential equations in R. Springer.

Baquero, O. S., Marconcin, S., Rocha, A., & Garcia, R. D. C. M. (2018). Companion animal demography and population management in Pinhais, Brazil. Preventive Veterinary Medicine.

 ``` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17``` ```## IASA model#' ## Parameters and intial conditions. data(dogs) dogs_iasa <- GetDataIASA(dogs, destination.label = "Pinhais", total.estimate = 50444) # Solve for point estimates. solve_iasa_pt <- SolveIASA(pars = dogs_iasa\$pars, init = dogs_iasa\$init, time = 0:15, alpha.owned = TRUE, method = 'rk4') ## Calculate local sensitivities to all parameters. local_solve_iasa2 <- CalculateLocalSens( model.out = solve_iasa_pt, sensv = "n2") ## Plot local sensitivities PlotLocalSens(local_solve_iasa2) ```