Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
dev='png',
fig.width=7,
fig.height=5.5 # ,
# dev.args=list(antialias = "none")
)
## ----setup--------------------------------------------------------------------
library(carbondate)
## ----find_spd, out.width="100%"-----------------------------------------------
spd <- FindSummedProbabilityDistribution(
calendar_age_range_BP = c(1000, 4500),
rc_determinations = armit$c14_age,
rc_sigmas = armit$c14_sig,
F14C_inputs = FALSE,
calibration_curve = intcal20,
plot_output = TRUE)
## ----two_normals_spd, echo = 2, out.width="100%"-----------------------------
oldpar <- par(no.readonly = TRUE)
two_normals_spd <- FindSummedProbabilityDistribution(
calendar_age_range_BP=c(2500, 7000),
rc_determinations= two_normals$c14_age,
rc_sigmas = two_normals$c14_sig,
calibration_curve=intcal20,
plot_output = TRUE)
par(new = TRUE,
mgp = c(3, 0.7, 0),
xaxs = "i",
yaxs = "i",
mar = c(5, 4.5, 4, 2) + 0.1,
las = 1)
xlim <- rev(range(two_normals_spd$calendar_age_BP))
ylim <- c(0, 3 * max(two_normals_spd$probability))
plot(
NULL,
NULL,
type = "n",
ylim = ylim,
xlim = xlim,
axes = FALSE,
xlab = NA,
ylab = NA,
xaxs = "i",
yaxs = "i")
# Show true underlying calendar age density
weights_true <- c(0.45, 0.55)
cluster_means_true_calBP <- c(3500, 5000)
cluster_precisions_true <- 1 / c(200, 100)^2
# Find and plot true exact density
truedens <- function(t, w, truemean, trueprec) {
dens <- 0
for(i in 1:length(w)) {
dens <- dens + w[i] * dnorm(t, mean = truemean[i], sd = 1/sqrt(trueprec[i]))
}
dens
}
curve(truedens(
x,
w = weights_true,
truemean = cluster_means_true_calBP,
trueprec = cluster_precisions_true),
from = 2500, to = 7000, n = 401,
lwd = 2,
col = "red", add = TRUE)
# Reset plotting parameters
par(oldpar)
## ----two_normals_compare, echo = FALSE, out.width="100%"---------------------
oldpar <- par(no.readonly = TRUE)
polya_urn_output <- PolyaUrnBivarDirichlet(
rc_determinations = two_normals$c14_age,
rc_sigmas = two_normals$c14_sig,
calibration_curve=intcal20,
n_iter = 1e4,
show_progress = FALSE)
two_normals_DPMM <- PlotPredictiveCalendarAgeDensity(
output_data = polya_urn_output,
show_SPD = TRUE)
par(new = TRUE,
mgp = c(3, 0.7, 0),
xaxs = "i",
yaxs = "i",
mar = c(5, 4.5, 4, 2) + 0.1,
las = 1)
xlim <- rev(range(two_normals_DPMM[[1]]$calendar_age_BP))
ylim <- c(0, 3 * max(two_normals_DPMM[[1]]$density_mean))
plot(
NULL,
NULL,
type = "n",
ylim = ylim,
xlim = xlim,
axes = FALSE,
xlab = NA,
ylab = NA,
xaxs = "i",
yaxs = "i")
# Show true underlying calendar age density
weights_true <- c(0.45, 0.55)
cluster_means_true_calBP <- c(3500, 5000)
cluster_precisions_true <- 1 / c(200, 100)^2
# Find and plot true exact density
truedens <- function(t, w, truemean, trueprec) {
dens <- 0
for(i in 1:length(w)) {
dens <- dens + w[i] * dnorm(t, mean = truemean[i], sd = 1/sqrt(trueprec[i]))
}
dens
}
curve(truedens(
x,
w = weights_true,
truemean = cluster_means_true_calBP,
trueprec = cluster_precisions_true),
from = 2500, to = 7000, n = 401,
lwd = 2,
col = "red", add = TRUE)
# Reset plotting parameters
par(oldpar)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.