Nothing
knitr::opts_chunk$set( collapse = TRUE, comment = "#>", message = FALSE )
This quick-start guide demonstrates how to generate multi-cluster high-dimensional data. We simulate three distinct $4\text{-}D$ clusters with different shapes, scales, and rotations.
library(cardinalR) library(langevitour)
Each cluster can be rotated in a different way across specified $2\text{-}D$ planes.
rot1 <- gen_rotation(p = 4, planes_angles = list(list(plane = c(1, 2), angle = 60), list(plane = c(3, 4), angle = 90))) rot2 <- gen_rotation(p = 4, planes_angles = list(list(plane = c(1, 3), angle = 30))) rot3 <- gen_rotation(p = 4, planes_angles = list(list(plane = c(2, 4), angle = 45)))
We use gen_multicluster() to generate 3 clusters with varying shapes and positions in $4\text{-}D$ space.
clust_data <- gen_multicluster(n = c(200, 300, 500), k = 3, loc = matrix(c( 0, 0, 0, 0, 5, 9, 0, 0, 3, 4, 10, 7 ), nrow = 3, byrow = TRUE), scale = c(2, 5, 1), shape = c("gaussian", "cone", "unifcube"), rotation = list(rot1, rot2, rot3), add_bkg = FALSE ) langevitour(clust_data |> dplyr::select(-cluster), pointSize = 2, group = clust_data$cluster)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.