aggregate_mean_or_first | Aggregate mean or first |
as.caretList | Convert object to caretList object |
as.caretList.default | Convert object to caretList object - For Future Use |
as.caretList.list | Convert list to caretList |
autoplot.caretStack | Convenience function for more in-depth diagnostic plots of... |
caretEnsemble | Combine several predictive models via weights |
caretList | Create a list of several train models from the caret package |
caretModelSpec | Generate a specification for fitting a caret model |
caretPredict | Prediction wrapper for 'train' |
caretStack | Combine several predictive models via stacking |
caretTrain | Wrapper to train caret models |
c.caretList | S3 definition for concatenating caretList |
check_caretStack | Check caretStack object |
checkCustomModel | Validate a custom caret model info list |
c.train | S3 definition for concatenating train objects |
defaultControl | Construct a default train control for use with caretList |
defaultMetric | Construct a default metric |
dotplot.caretStack | Comparison dotplot for a caretStack object |
dropExcludedClass | Drop Excluded Class |
extractBestPreds | Extract the best predictions from a train object |
extractCaretTarget | Extracts the target variable from a set of arguments headed... |
extractCaretTarget.default | Extracts the target variable from a set of arguments headed... |
extractCaretTarget.formula | Extracts the target variable from a set of arguments headed... |
extractMetric | Generic function to extract accuracy metrics from various... |
extractMetric.caretList | Extract accuracy metrics from a 'caretList' object |
extractMetric.caretStack | Extract accuracy metrics from a 'caretStack' object |
extractMetric.train | Extract accuracy metrics from a 'train' model |
extractModelName | Extract the method name associated with a single train object |
greedyMSE | Greedy optimization for MSE |
greedyMSE_caret | caret interface for greedyMSE |
isClassifier | Is Classifier |
isClassifierAndValidate | Validate a model type |
mae | Compute MAE |
methodCheck | Check that the methods supplied by the user are valid caret... |
models.class | caretList of classification models |
models.reg | caretList of regression models |
normalize_to_one | Normalize to One |
permutationImportance | Permutation Importance |
plot.caretList | Plot a caretList object |
plot.caretStack | Plot a caretStack object |
predict.caretList | Create a matrix of predictions for each of the models in a... |
predict.caretStack | Make predictions from a caretStack |
predict.greedyMSE | Predict method for greedyMSE |
print.caretStack | Print a caretStack object |
print.greedyMSE | Print method for greedyMSE |
print.summary.caretList | Print a summary.caretList object |
print.summary.caretStack | Print a summary.caretStack object |
set_excluded_class_id | Set excluded class id |
shuffled_mae | Shuffled MAE |
stackedTrainResiduals | Extracted stacked residuals for the autoplot |
sub-.caretList | Index a caretList |
summary.caretList | Summarize a caretList |
summary.caretStack | Summarize a caretStack object |
tuneCheck | Check that the tuning parameters list supplied by the user is... |
validateExcludedClass | Validate the excluded class |
varImp.caretStack | Variable importance for caretStack |
varImp.greedyMSE | variable importance for a greedyMSE model |
wtd.sd | Calculate a weighted standard deviation |
X.class | data for classification |
X.reg | data for classification |
Y.class | data for classification |
Y.reg | data for regression |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.