Nothing
# ----- GLM -----
#' Generate Mock Data for Generalized Linear Model (GLM) in Guassian Family
#'
#' This function creates a mock dataset suitable for testing Generalized Linear Model (GLM) in Guassian Family.
#' It generates covariates (`X1`, `X2`, `X3`) and a response vector (`Y`).
#'
#' @param seed An integer value to set the random seed for reproducibility. Default is 1.
#'
#' @return A data frame containing columns `X1`, `X2`, `X3` (covariates), `Y` (response).
mock_glm_gaussian_data <- function(seed = 1) {
set.seed(seed)
n <- 10
return(data.frame(
X1 = rnorm(n),
X2 = rnorm(n),
X3 = rnorm(n),
Y = rnorm(n)
))
}
#' Mock Initialization Object for Catalytic Generalized Linear Model (GLM) in Gaussian Family
#'
#' This function sets up a mock a initialization object for catalytic Generalized Linear Model (GLM)
#' in Guassian family using `mocked_glm_data` as input. It prepares the required data and parameters to initialize the
#' `cat_glm_initialization` function with a predefined model structure, specifying the
#' response and predictor variables.
#'
#' @param mocked_glm_gaussian_data A data frame with mock data specifically formatted for catalytic GLM initialization in Gaussian family.
#' It should contain covariates (`X1`, `X2`, `X3`) and a response vector (`Y`). This data serves as the input for initializing the catalytic GLM.
#' @param ... Additional arguments passed to the `cat_glm_initialization` function.
#'
#' @return A structured list or object from `cat_glm_initialization`, set up with the provided mock data and model parameters.
#' The model includes all obervation data and is configured to generate synthetic data
#' with a sample size specified by `syn_size`. More details on `?cat_glm_initialization`.
mock_cat_glm_gaussian_initialization <- function(mocked_glm_gaussian_data, ...) {
return(
cat_glm_initialization(
formula = Y ~ 1,
family = gaussian,
data = mocked_glm_gaussian_data,
syn_size = 100,
...
)
)
}
#' Generate Mock Data for Generalized Linear Model (GLM) in Binomial Family
#'
#' This function creates a mock dataset suitable for testing Generalized Linear Model (GLM) in Binomial Family.
#' It generates covariates (`X1`, `X2`, `X3`) and a response vector (`Y`).
#'
#' @param seed An integer value to set the random seed for reproducibility. Default is 1.
#'
#' @return A data frame containing columns `X1`, `X2`, `X3` (covariates), `Y` (response).
mock_glm_binomial_data <- function(seed = 1) {
set.seed(seed)
n <- 10
return(data.frame(
X1 = rnorm(n),
X2 = rnorm(n),
X3 = rnorm(n),
Y = as.integer(rbinom(n, 1, 0.5))
))
}
#' Mock Initialization Object for Catalytic Generalized Linear Model (GLM) in Binomial Family
#'
#' This function sets up a mock a initialization object for catalytic Generalized Linear Model (GLM)
#' in Binomial family using `mocked_glm_data` as input. It prepares the required data and parameters to initialize the
#' `cat_glm_initialization` function with a predefined model structure, specifying the
#' response and predictor variables.
#'
#' @param mocked_glm_binomial_data A data frame with mock data specifically formatted for catalytic GLM initialization in Binomial family.
#' It should contain covariates (`X1`, `X2`, `X3`) and a response vector (`Y`). This data serves as the input for initializing the catalytic GLM.
#' @param ... Additional arguments passed to the `cat_glm_initialization` function.
#'
#' @return A structured list or object from `cat_glm_initialization`, set up with the provided mock data and model parameters.
#' The model includes all obervation data and is configured to generate synthetic data
#' with a sample size specified by `syn_size`. More details on `?cat_glm_initialization`.
mock_cat_glm_binomial_initialization <- function(mocked_glm_binomial_data, ...) {
return(
cat_glm_initialization(
formula = Y ~ 1,
family = binomial,
data = mocked_glm_binomial_data,
syn_size = 100,
...
)
)
}
# ----- COX -----
#' Generate Mock Data for Cox Proportional Hazards Model
#'
#' This function creates a mock dataset suitable for testing Cox proportional hazards models.
#' It generates covariates (`X1`, `X2`, `X3`), a survival time (`time`), and a censoring indicator (`status`).
#'
#' @param seed An integer value to set the random seed for reproducibility. Default is 1.
#'
#' @return A data frame containing columns `X1`, `X2`, `X3` (covariates), `time` (survival time),
#' and `status` (censoring indicator, where 1 indicates an event and 0 indicates censoring).
mock_cox_data <- function(seed = 1) {
set.seed(seed)
n <- 10
return(data.frame(
X1 = rnorm(n),
X2 = rnorm(n),
X3 = rnorm(n),
time = runif(n),
status = rbinom(n, 1, 0.5)
))
}
#' Mock Initialization Object for Catalytic Cox Proportional Hazards Model (COX)
#'
#' This function sets up a mock a initialization object for catalytic Cox Proportional Hazards Model (COX) using
#' `mocked_cox_data` as input. It prepares the required data and parameters to initialize the
#' `cat_cox_initialization` function with a predefined model structure, specifying the
#' response and predictor variables.
#'
#' @param mocked_cox_data A data frame with mock data specifically formatted for catalytic COX initialization.
#' It should contain columns for fixed effects (`X1`, `X2`, `X3`), a survival time (`time`),
#' and a censoring indicator (`status`). This data serves as the input for initializing the catalytic COX.
#' @param ... Additional arguments passed to the `cat_cox_initialization` function.
#'
#' @return A structured list or object from `cat_cox_initialization`, set up with the provided mock data and model parameters.
#' The model includes all obervation data and is configured to generate synthetic data
#' with a sample size specified by `syn_size`. More details on `?cat_cox_initialization`.
mock_cat_cox_initialization <- function(mocked_cox_data, ...) {
return(
cat_cox_initialization(
formula = survival::Surv(time, status) ~ 1,
data = mocked_cox_data,
syn_size = 100,
...
)
)
}
# ----- LMM -----
#' Generate Mock Data for Linear Mixed Model
#'
#' This function creates a mock dataset for testing a linear mixed model, with both fixed
#' and random effect variables, as well as a grouping factor.
#'
#' @param seed An integer value to set the random seed for reproducibility. Default is 1.
#'
#' @return A data frame containing columns `X1`, `X2`, `X3` (fixed effects), `Y` (response variable),
#' `Z1`, `Z2`, `Z3` (random effects), and `group` (grouping factor).
mock_lmm_data <- function(seed = 1) {
set.seed(seed)
n <- 10
return(data.frame(
X1 = rnorm(n),
X2 = rnorm(n),
X3 = rnorm(n),
Y = rnorm(n),
Z1 = rnorm(n),
Z2 = rnorm(n),
Z3 = rnorm(n),
group = sample(1:3, n, replace = TRUE)
))
}
#' Mock Initialization Object for Catalytic Linear Mixed Model (LMM)
#'
#' This function sets up a mock a initialization object for catalytic linear mixed models (LMM) using
#' `mocked_lmm_data` as input. It prepares the required data and parameters to initialize the
#' `cat_lmm_initialization` function with a predefined model structure, specifying the
#' response and predictor variables.
#'
#' @param mocked_lmm_data A data frame with mock data specifically formatted for catalytic LMM initialization.
#' It should contain columns for fixed effects (`X1`, `X2`, `X3`), random effects (`Z1`, `Z2`, `Z3`),
#' the response variable (`Y`), and a grouping factor (`group`). This data serves as the input
#' for initializing the catalytic LMM.
#' @param ... Additional arguments passed to the `cat_lmm_initialization` function.
#'
#' @return A structured list or object from `cat_lmm_initialization`, set up with the provided mock data and model parameters.
#' The model includes both fixed and random effects and is configured to generate synthetic data
#' with a sample size specified by `syn_size`. More details on `?cat_lmm_initialization`.
mock_cat_lmm_initialization <- function(mocked_lmm_data, ...) {
return(cat_lmm_initialization(
formula = Y ~ X1 + X2 + X3,
data = mocked_lmm_data,
x_cols = c("X1", "X2", "X3"),
z_cols = c("Z1", "Z2", "Z3"),
y_col = c("Y"),
group_col = c("group"),
syn_size = 100,
...
))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.