print.cauphylm | R Documentation |
cauphylm
.Generic Methods for S3 class cauphylm
.
## S3 method for class 'cauphylm'
print(x, digits = max(3, getOption("digits") - 3), ...)
## S3 method for class 'cauphylm'
vcov(object, ...)
## S3 method for class 'cauphylm'
logLik(object, ...)
## S3 method for class 'logLik.cauphylm'
AIC(object, k = 2, ...)
## S3 method for class 'cauphylm'
AIC(object, k = 2, ...)
## S3 method for class 'cauphylm'
predict(object, newdata = NULL, se.fit = FALSE, ...)
## S3 method for class 'cauphylm'
confint(object, parm, level = 0.95, ...)
## S3 method for class 'cauphylm'
coef(object, ...)
x |
an object of class |
digits |
number of digits to show in summary method. |
... |
further arguments to methods. |
object |
an object of class |
k |
numeric, the penalty per parameter to be used; the default |
newdata |
an optional data frame to provide the predictor values at which predictions should be made. If omitted, the fitted values are used. Currently, predictions are made for new species whose placement in the tree is unknown. Only their covariate information is used. The prediction for the trend model is not currently implemented. |
se.fit |
A switch indicating if standard errors are required. |
parm |
a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered. |
level |
the confidence level required. |
Same value as the associated methods from the stats
package:
vcov
an estimated covariance matrix, see compute_vcov
;
logLik
an object of class logLik
;
AIC
a numeric value;
confint
a matrix (or vector) with columns giving lower and upper confidence limits for each parameter;
coef
coefficients extracted from the model;
predict
a vector of predicted values.
cauphylm
, vcov
, logLik
AIC
, confint
, coef
,
predict
, predict.phylolm
# Simulate tree and data
set.seed(1289)
phy <- ape::rphylo(20, 0.1, 0)
error <- rTraitCauchy(n = 1, phy = phy, model = "cauchy",
parameters = list(root.value = 0, disp = 0.1))
x1 <- ape::rTraitCont(phy, model = "BM", sigma = 0.1, root.value = 0)
trait <- 3 + 2*x1 + error
# Fit the data
fit <- cauphylm(trait ~ x1, phy = phy)
fit
# vcov matrix
vcov(fit)
# Approximate confidence intervals
confint(fit)
# log likelihood of the fitted object
logLik(fit)
# AIC of the fitted object
AIC(fit)
# predicted values
predict(fit)
# coefficients
coef(fit)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.