Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----message=FALSE------------------------------------------------------------
require(causalBatch)
require(ggplot2)
require(ggpubr)
require(tidyr)
n = 200
## ----eval=FALSE---------------------------------------------------------------
# vignette("cb.simulations", package="causalBatch")
## -----------------------------------------------------------------------------
# a function for plotting a scatter plot of the data
plot.sim <- function(Ys, Ts, Xs, title="",
xlabel="Covariate",
ylabel="Outcome (1st dimension)") {
data = data.frame(Y1=Ys[,1], Y2=Ys[,2],
Group=factor(Ts, levels=c(0, 1), ordered=TRUE),
Covariates=Xs)
data %>%
ggplot(aes(x=Covariates, y=Y1, color=Group)) +
geom_point() +
labs(title=title, x=xlabel, y=ylabel) +
scale_x_continuous(limits = c(-1, 1)) +
scale_color_manual(values=c(`0`="#bb0000", `1`="#0000bb"),
name="Group/Batch") +
theme_bw()
}
## ----fig.width=5, fig.height=3------------------------------------------------
sim.simpl = cb.sims.sim_sigmoid(n=n, eff_sz=1, unbalancedness=1.5)
plot.sim(sim.simpl$Ys, sim.simpl$Ts, sim.simpl$Xs, title="Sigmoidal Simulation")
## ----eval=FALSE---------------------------------------------------------------
# vignette("cb.detect.caus_cdcorr", package="causalBatch")
## -----------------------------------------------------------------------------
result <- cb.detect.caus_cdcorr(sim.simpl$Ys, sim.simpl$Ts, sim.simpl$Xs, R=100)
print(sprintf("p-value: %.4f", result$Test$p.value))
## -----------------------------------------------------------------------------
cor.sim.simpl <- cb.correct.matching_cComBat(sim.simpl$Ys, sim.simpl$Ts,
data.frame(Covar=sim.simpl$Xs),
match.form="Covar")
## ----fig.width=5, fig.height=3------------------------------------------------
plot.sim(cor.sim.simpl$Ys.corrected, cor.sim.simpl$Ts, cor.sim.simpl$Xs$Covar,
title="Sigmoidal Simulation (matching cComBat corrected)")
## -----------------------------------------------------------------------------
result.cor <- cb.detect.caus_cdcorr(cor.sim.simpl$Ys.corrected, cor.sim.simpl$Ts,
cor.sim.simpl$Xs$Covar, R=100)
print(sprintf("p-value: %.4f", result.cor$Test$p.value))
## -----------------------------------------------------------------------------
Xs.2covar <- data.frame(Covar1=sim.simpl$Xs, Covar2=runif(n))
## -----------------------------------------------------------------------------
cor.sim <- cb.correct.matching_cComBat(sim.simpl$Ys, sim.simpl$Ts, Xs.2covar,
match.form="Covar1 + Covar2")
## -----------------------------------------------------------------------------
Xs.3covar <- cbind(data.frame(Cat.Covar=factor(rbinom(n, size=1, 0.5))),
Xs.2covar)
## -----------------------------------------------------------------------------
match.args <- list(method="nearest", exact="Cat.Covar", replace=FALSE,
caliper=0.1)
cor.sim <- cb.correct.matching_cComBat(sim.simpl$Ys, sim.simpl$Ts, Xs.3covar,
match.form="Covar1 + Covar2 + Cat.Covar",
match.args=match.args)
## -----------------------------------------------------------------------------
# a function for plotting a histogram plot of the covariates
plot.covars <- function(Ts, Xs, title="",
xlabel="Covariate",
ylabel="Number of Samples") {
data = data.frame(Covariates=as.numeric(Xs),
Group=factor(Ts, levels=c(0, 1), ordered=TRUE))
data %>%
ggplot(aes(x=Covariates, color=Group, fill=Group)) +
geom_histogram(position="identity", alpha=0.5) +
labs(title=title, x=xlabel, y=ylabel) +
scale_x_continuous(limits = c(-1, 1)) +
scale_y_continuous(limits=c(0, 12)) +
scale_color_manual(values=c(`0`="#bb0000", `1`="#0000bb"),
name="Group/Batch") +
scale_fill_manual(values=c(`0`="#bb0000", `1`="#0000bb"),
name="Group/Batch") +
theme_bw()
}
ggarrange(plot.covars(sim.simpl$Ts, sim.simpl$Xs, title="(A) Unfiltered samples"),
plot.covars(cor.sim.simpl$Ts, cor.sim.simpl$Xs$Covar,
title="(B) Matched + Trimmed samples"),
nrow=2)
## ----fig.width=5, fig.height=4.5----------------------------------------------
cor.sim.oos <- cb.correct.matching_cComBat(sim.simpl$Ys, sim.simpl$Ts, data.frame(Covar=sim.simpl$Xs),
match.form="Covar", apply.oos=TRUE)
ggarrange(plot.covars(cor.sim.oos$Ts, cor.sim.oos$Xs$Covar,
title="(A) In- and out-of-sample data"),
plot.sim(cor.sim.oos$Ys.corrected, cor.sim.oos$Ts, cor.sim.oos$Xs$Covar,
title="(B) matching cComBat on in- and out-of-sample data"),
nrow=2)
## ----fig.width=5, fig.height=3------------------------------------------------
oos.ids <- cb.align.vm_trim(sim.simpl$Ts, sim.simpl$Xs)
Ys.oos <- sim.simpl$Ys[oos.ids,,drop=FALSE]; Ts.oos <- sim.simpl$Ts[oos.ids]
Xs.oos <- sim.simpl$Xs[oos.ids,,drop=FALSE]
Ys.oos.cor <- cb.correct.apply_cComBat(Ys.oos, Ts.oos, data.frame(Covar=Xs.oos),
cor.sim.oos$Model)
plot.sim(Ys.oos.cor, Ts.oos, Xs.oos, title=" matching cComBat applied to OOS data")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.