Nothing
#' Calculate direct index according to the Paasche hedonic double imputation method
#'
#' By the parameters 'dependent_variable', 'continue_variable' and 'categorical_variables' as regression model is compiled.
#' With the model, a direct series of index figures is estimated by use of hedonic regression.
#'
#' N.B.: the independent variables must be entered transformed (and ready) in the parameters.
#' Hence, not: log(floor_area), but transform the variable in advance and then provide log_floor_area.
#' This does not count for the dependent variable. This should be entered untransformed
#'
#' Within the data, it is not necessary to filter the data on relevant variables or complete records.
#' This is taken care of in the function.
#'
#' @author Farley Ishaak
#' @param dataset table with data (does not need to be a selection of relevant variables)
#' @param period_variable variable in the table with periods
#' @param dependent_variable usually the sale price
#' @param continuous_variables vector with quality determining numeric variables (no dummies)
#' @param categorical_variables vector with quality determining categorical variables (also dummies)
#' @param index caprice index
#' @param reference_period period or group of periods that will be set to 100 (numeric/string)
#' @param number_of_observations number of observations per period (default = TRUE)
#' @param imputation display the underlying average imputation values? (default = FALSE)
#' @return
#' table with index, imputation averages, number of observations and confidence intervals per period
calculate_paasche <- function(dataset
, period_variable
, dependent_variable
, continuous_variables
, categorical_variables
, reference_period = NULL
, index = TRUE
, number_of_observations = FALSE
, imputation = FALSE) {
# Merge independent variables
# independent_variables <- c(continuous_variables, categorical_variables)
assertthat::assert_that(assertthat::has_name(dataset, c(period_variable, dependent_variable, continuous_variables, categorical_variables)))
independent_variables <- c(continuous_variables, categorical_variables)
# Rename period_variable and transform to character
dataset <- dataset |>
dplyr::rename(period_var_temp = all_of(period_variable)) |>
dplyr::mutate(period_var_temp = as.character(period_var_temp),
dplyr::across(dplyr::all_of(categorical_variables),
as.factor))
## Calculate index
# Create list of periods
period_list <- sort(unique(dataset$period_var_temp), decreasing = FALSE)
number_of_periods <- number_of_periods_temp <- length(period_list)
# Prepare table for imputations
tbl_imputations <- data.frame(period = period_list)
# Prepare vector for index and numbers
Index <- c(0)
number <- c(0)
for (imputation_period in 1:number_of_periods) {
# Select the last and first period
period_list_paasche <- c(period_list[number_of_periods_temp], period_list[1])
dataset_temp <- dataset[which(dataset$period_var_temp %in% period_list_paasche), ]
# Calculate Paasche imputations and numbers
tbl_average_imputation <-
calculate_hedonic_imputation(dataset_temp = dataset_temp
, period_temp = "period_var_temp"
, dependent_variable_temp = dependent_variable
, independent_variables_temp = independent_variables
, number_of_observations_temp = number_of_observations
, period_list_temp = period_list_paasche)
if (imputation == TRUE) {
# Retain columns that are necessary for imputations
tbl_merge <- tbl_average_imputation[, c("period", "average_imputation")]
# Insert imputations into table
tbl_imputations <- merge(tbl_imputations, tbl_merge, by = "period", all.x = TRUE)
# Rename variable to base year
names(tbl_imputations)[ncol(tbl_imputations)] <- paste0("Base_", period_list[number_of_periods_temp])
}
if (number_of_observations == TRUE) {
# Insert imputations into table
number[imputation_period] <- tbl_average_imputation$number_of_observations[1]
}
# Insert last index figure into vector
Index[imputation_period] <- tbl_average_imputation$average_imputation[1] / tbl_average_imputation$average_imputation[2] * 100
# Stepwise delete last period
number_of_periods_temp <- number_of_periods_temp - 1
}
# Reverse the index series (last period was calculated first)
Index <- Index[imputation_period:1]
number <- number[imputation_period:1]
# Rescale the index
if (!is.null(reference_period)) {
Index <- calculate_index(period_list, Index, reference_period)
}
# Create table
paasche <- data.frame(period = period_list)
column_start <- 1
if (number_of_observations == TRUE) {
paasche$number_of_observations <- number
column_start <- 2
}
if (index == TRUE) {
paasche$Index <- Index
}
if (imputation == TRUE) {
number_of_periods_plus_1 <- number_of_periods + 1
tbl_imputations <- tbl_imputations[, c(1, number_of_periods_plus_1:column_start)] # Reverse the table (last period was calculated first)
tbl_imputations <- unique.data.frame(tbl_imputations)
tbl_imputations <- data.frame(period = period_list, Imputation = diag(as.matrix(tbl_imputations[, 2:ncol(tbl_imputations)])))
paasche <- merge(paasche, tbl_imputations, by = "period")
}
return(paasche)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.