Nothing
test_that("Test calculate_geometric_average", {
a <- c(1, 2, 3, 4)
expect_equal(round(calculate_geometric_average(a), 4), round(2.213364, 4))
# Check that NA values are ignored
b <- c(1, 2, NA, 4)
expect_equal(round(calculate_geometric_average(b), 4), round(exp(mean(log(c(1, 2, 4)))), 4))
# Non-numeric input should trigger an error
expect_error(calculate_geometric_average(c("a", "b", "c")), "Values is not \\(fully\\) numeric")
})
test_that("Test calculate_index", {
periods <- c("2020Q1", "2020Q2", "2020Q3")
values <- c(100, 110, 90)
result <- calculate_index(periods, values, reference_period = "2020Q1")
expect_equal(round(result[1], 1), 100)
expect_equal(round(result[2], 1), 110)
expect_equal(round(result[3], 1), 90)
# Check fallback to first period if reference not specified
result2 <- calculate_index(periods, values)
expect_equal(result, result2)
# Non-numeric values trigger an error
expect_error(calculate_index(periods, c("a", "b", "c")), "values variable is not \\(fully\\) numeric")
# Mismatch in vector lengths triggers an error
expect_error(calculate_index(c("2020Q1", "2020Q2"), c(100, 110, 120)), "not of the same length")
})
test_that("Test validate_input", {
# Valid input should not throw an error
expect_silent(validate_input(
dataset = data_constraxion,
period_variable = c("period"),
dependent_variable = c("price"),
continuous_variables = c("floor_area"),
categorical_variables = c("neighbourhood_code")
))
expect_error(validate_input(
dataset = data_constraxion[, -which(names(data_constraxion) == "period")],
period_variable = c("period"),
dependent_variable = c("price"),
continuous_variables = c("floor_area"),
categorical_variables = c("neighbourhood_code")
), "does not have all of these name")
# Error: non-numeric continuous variable
data_non_numeric <- data_constraxion
data_non_numeric$floor_area <- as.character(data_non_numeric$floor_area)
expect_error(validate_input(
dataset = data_non_numeric,
period_variable = c("period"),
dependent_variable = c("price"),
continuous_variables = c("floor_area"),
categorical_variables = c("neighbourhood_code")
), "not \\(fully\\) numeric")
# Error: negative price
data_negative_price <- data_constraxion
data_negative_price$price[1] <- -100000
expect_error(validate_input(
dataset = data_negative_price,
period_variable = c("period"),
dependent_variable = c("price"),
continuous_variables = c("floor_area"),
categorical_variables = c("neighbourhood_code")
), "contains negative values")
# Error: invalid period format
data_bad_period <- data_constraxion
data_bad_period$period <- c("2020-01", "2020-02", rep("2020Q1", nrow(data_bad_period) - 2))
expect_error(validate_input(
dataset = data_bad_period,
period_variable = c("period"),
dependent_variable = c("price"),
continuous_variables = c("floor_area"),
categorical_variables = c("neighbourhood_code")
), "correct format")
})
test_that("Test calculate_hedonic_imputation", {
save_refs <- FALSE # Set to TRUE to save reference output
ref_file <- test_path("test_data", "hedonic_imputation_output.rds")
# Input variables
period_variable <- c("period")
dependent_variable <- c("price")
continuous_variables <- c("floor_area")
categorical_variables <- c("neighbourhood_code")
independent_variables <- c(continuous_variables, categorical_variables)
number_of_observations <- TRUE
# Prepare dataset in right format
dataset <- data_constraxion |>
dplyr::rename(period_var_temp = dplyr::all_of(period_variable)) |>
dplyr::mutate(
period_var_temp = as.character(period_var_temp),
dplyr::across(dplyr::all_of(categorical_variables), as.factor)
)
period_list <- sort(unique(dataset$period_var_temp), decreasing = FALSE)
# Run function
tbl_output <- calculate_hedonic_imputation(
dataset_temp = dataset,
period_temp = "period_var_temp",
dependent_variable_temp = dependent_variable,
independent_variables_temp = independent_variables,
number_of_observations_temp = number_of_observations,
period_list_temp = period_list
)
if (save_refs) {
dir.create(dirname(ref_file), showWarnings = FALSE, recursive = TRUE)
saveRDS(tbl_output, ref_file)
succeed("Reference output saved.")
} else {
ref_tbl <- readRDS(ref_file)
expect_equal(tbl_output, ref_tbl, tolerance = 1e-8)
}
})
test_that("Test calculate_hmts_index", {
save_refs <- FALSE # Set to TRUE to save the reference output
ref_file <- test_path("test_data", "hmts_index_output.rds")
# Parameters
period_variable <- "period"
dependent_variable <- "price"
continuous_variables <- c("floor_area")
categorical_variables <- c("neighbourhood_code")
reference_period <- 2015
periods_in_year <- 4
production_since <- NULL
number_preliminary_periods <- 2
number_of_observations <- TRUE
resting_points <- FALSE # Set to FALSE as requested
# Prepare dataset as expected by the function
dataset <- data_constraxion |>
dplyr::rename(period = dplyr::all_of(period_variable)) |>
dplyr::mutate(
period = as.character(period),
dplyr::across(dplyr::all_of(categorical_variables), as.factor)
)
# Run the function
tbl_output <- calculate_hmts_index(
dataset = dataset,
period_variable = period_variable,
dependent_variable = dependent_variable,
continuous_variables = continuous_variables,
categorical_variables = categorical_variables,
reference_period = reference_period,
periods_in_year = periods_in_year,
production_since = production_since,
number_preliminary_periods = number_preliminary_periods,
number_of_observations = number_of_observations,
resting_points = resting_points
)
if (save_refs) {
dir.create(dirname(ref_file), showWarnings = FALSE, recursive = TRUE)
saveRDS(tbl_output, ref_file)
succeed("Reference output saved.")
} else {
ref_tbl <- readRDS(ref_file)
expect_equal(tbl_output, ref_tbl, tolerance = 1e-8)
}
})
test_that("Test calculate_hedonic_imputationmatrix", {
save_refs <- FALSE # Set to TRUE to save the reference output
ref_file <- test_path("test_data", "hedonic_imputation_matrix_output.rds")
# Parameters used by the function
period_variable <- "period"
dependent_variable <- "price"
continuous_variables <- c("floor_area")
categorical_variables <- c("neighbourhood_code")
periods_in_year <- 4
number_of_observations <- TRUE
production_since <- NULL
number_preliminary_periods <- 2
# Prepare dataset as expected
dataset <- data_constraxion |>
dplyr::rename(period = dplyr::all_of(period_variable)) |>
dplyr::mutate(
period = as.character(period),
dplyr::across(dplyr::all_of(categorical_variables), as.factor)
)
# Run the function
matrix_output <- calculate_hedonic_imputationmatrix(
dataset = dataset,
period_variable = "period",
dependent_variable = dependent_variable,
continuous_variables = continuous_variables,
categorical_variables = categorical_variables,
periods_in_year = periods_in_year,
number_of_observations = number_of_observations,
production_since = production_since,
number_preliminary_periods = number_preliminary_periods
)
if (save_refs) {
dir.create(dirname(ref_file), showWarnings = FALSE, recursive = TRUE)
saveRDS(matrix_output, ref_file)
succeed("Reference output saved.")
} else {
ref_tbl <- readRDS(ref_file)
expect_equal(matrix_output$matrix_hmts_index, ref_tbl$matrix_hmts_index, tolerance = 1e-3)
}
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.