Nothing
## Example of creating and using codebooks with the ces package
library(ces)
# 1. Download a CES dataset
ces_data <- get_ces("2019")
# 2. Create a comprehensive codebook for the dataset
codebook <- create_codebook(ces_data)
# 3. View the structure of the codebook
str(codebook)
# 4. Look at the first few variables in the codebook
head(codebook, 10)
# 5. Find all variables related to voting
if (requireNamespace("dplyr", quietly = TRUE)) {
library(dplyr)
voting_vars <- codebook %>%
filter(grepl("vote|voting|ballot", question, ignore.case = TRUE)) %>%
select(variable, question)
print(voting_vars)
# 6. Get the data for these voting variables
voting_data <- get_ces_subset("2019", variables = voting_vars$variable)
# 7. Analyze voting patterns
if ("vote_choice" %in% names(voting_data)) {
vote_summary <- voting_data %>%
group_by(vote_choice) %>%
summarize(count = n()) %>%
mutate(percentage = count / sum(count) * 100)
print(vote_summary)
}
}
# 8. Find all demographic variables
demographic_vars <- codebook %>%
filter(grepl("age|gender|education|income|region|province",
question, ignore.case = TRUE)) %>%
select(variable, question)
print(demographic_vars)
# 9. Export the codebook to CSV
# Uncomment to execute:
# export_codebook(codebook, "ces_2019_codebook.csv")
# 10. Create a simplified codebook without value codes
simple_codebook <- create_codebook(ces_data, include_values = FALSE)
head(simple_codebook, 10)
# 11. Create a codebook as a data.frame instead of a tibble
df_codebook <- create_codebook(ces_data, format = "data.frame")
class(df_codebook)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.