Nothing
## Example of using the codebook functionality of the ces package
library(ces)
# 1. Get a CES dataset
ces_data <- get_ces("2019")
# 2. Create a codebook
codebook <- create_codebook(ces_data)
# 3. View the first few entries of the codebook
head(codebook)
# 4. Count the number of questions by type
if (requireNamespace("dplyr", quietly = TRUE)) {
library(dplyr)
# Check how many questions contain certain keywords
question_themes <- codebook %>%
mutate(
about_voting = grepl("vote|ballot|election", question, ignore.case = TRUE),
about_leaders = grepl("leader|prime minister|trudeau|scheer", question, ignore.case = TRUE),
about_issues = grepl("issue|policy|economy|climate|immigration", question, ignore.case = TRUE),
about_demographics = grepl("age|gender|education|income|province", question, ignore.case = TRUE)
) %>%
summarize(
voting_questions = sum(about_voting, na.rm = TRUE),
leader_questions = sum(about_leaders, na.rm = TRUE),
issue_questions = sum(about_issues, na.rm = TRUE),
demographic_questions = sum(about_demographics, na.rm = TRUE),
total_questions = n()
)
print(question_themes)
}
# 5. Find specific types of questions
party_vars <- codebook %>%
filter(grepl("party", question, ignore.case = TRUE))
print(party_vars)
# 6. Export the codebook to a CSV file
# export_codebook(codebook, "ces_2019_codebook.csv")
# 7. Get a subset of voting-related variables using the codebook
voting_vars <- codebook %>%
filter(grepl("vote|voted", question, ignore.case = TRUE)) %>%
pull(variable)
# Get the subset of data
voting_data <- get_ces_subset("2019", variables = voting_vars)
# 8. View the structure of the voting data
str(voting_data)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.