Nothing
# aet04 ----
#' @describeIn aet04 Main TLG function
#'
#' @inheritParams gen_args
#' @param grade_groups (`list`) putting in correspondence toxicity grades and labels.
#' @returns the main function returns an `rtables` object.
#'
#' @details
#' * Numbers represent absolute numbers of patients and fraction of `N`, or absolute number of event when specified.
#' * Remove zero-count rows unless overridden with `prune_0 = FALSE`.
#' * Events with missing grading values are excluded.
#' * Split columns by arm, typically `ACTARM`.
#' * Does not include a total column by default.
#' * Sort Body System or Organ Class and Dictionary-Derived Term by highest overall frequencies. Analysis Toxicity
#' Grade is sorted by severity.
#'
#' @note
#' * `adam_db` object must contain an `adae` table with the columns `"AEBODSYS"`, `"AEDECOD"` and `"ATOXGR"`.
#'
#' @export
#'
aet04_main <- function(adam_db,
arm_var = "ACTARM",
lbl_overall = NULL,
grade_groups = NULL,
...) {
assert_all_tablenames(adam_db, "adsl", "adae")
assert_string(arm_var)
assert_string(lbl_overall, null.ok = TRUE)
assert_list(grade_groups, types = "character", null.ok = TRUE)
assert_valid_variable(adam_db$adsl, c("USUBJID", arm_var), types = list(c("character", "factor")))
assert_valid_variable(adam_db$adae, c(arm_var, "AEBODSYS", "AEDECOD"), types = list(c("character", "factor")))
assert_valid_variable(adam_db$adae, "USUBJID", empty_ok = TRUE, types = list(c("character", "factor")))
assert_valid_variable(adam_db$adae, "ATOXGR", na_ok = TRUE, types = list("factor"))
assert_valid_var_pair(adam_db$adsl, adam_db$adae, arm_var)
lbl_overall <- render_safe(lbl_overall)
lbl_aebodsys <- var_labels_for(adam_db$adae, "AEBODSYS")
lbl_aedecod <- var_labels_for(adam_db$adae, "AEDECOD")
if (is.null(grade_groups)) {
grade_groups <- list(
"Grade 1-2" = c("1", "2"),
"Grade 3-4" = c("3", "4"),
"Grade 5" = c("5")
)
}
lyt <- aet04_lyt(
arm_var = arm_var,
total_var = "TOTAL_VAR",
lbl_overall = lbl_overall,
lbl_aebodsys = lbl_aebodsys,
lbl_aedecod = lbl_aedecod,
grade_groups = grade_groups
)
adam_db$adae$TOTAL_VAR <- "- Any adverse events - "
tbl <- build_table(lyt, df = adam_db$adae, alt_counts_df = adam_db$adsl)
tbl
}
#' `aet04` Layout
#'
#' @inheritParams aet04_main
#'
#' @param total_var (`string`) variable to create summary of all variables.
#' @param lbl_aebodsys (`string`) text label for `AEBODSYS`.
#' @param lbl_aedecod (`string`) text label for `AEDECOD`.
#' @param grade_groups (`list`) putting in correspondence toxicity grades and labels.
#' @returns a `PreDataTableLayouts` object.
#' @keywords internal
#'
aet04_lyt <- function(arm_var,
total_var,
lbl_overall,
lbl_aebodsys,
lbl_aedecod,
grade_groups) {
basic_table(show_colcounts = TRUE) %>%
split_cols_by_with_overall(arm_var, lbl_overall) %>%
split_rows_by(
var = total_var,
label_pos = "hidden",
child_labels = "visible",
indent_mod = -1L
) %>%
summarize_num_patients(
var = "USUBJID",
.stats = "unique",
.labels = "- Any Grade -",
.indent_mods = 7L
) %>%
count_occurrences_by_grade(
var = "ATOXGR",
grade_groups = grade_groups,
.indent_mods = 6L
) %>%
split_rows_by(
"AEBODSYS",
child_labels = "visible",
nested = FALSE,
split_fun = drop_split_levels,
label_pos = "topleft",
split_label = lbl_aebodsys
) %>%
split_rows_by(
"AEDECOD",
child_labels = "visible",
split_fun = add_overall_level("- Overall -", trim = TRUE),
label_pos = "topleft",
split_label = lbl_aedecod
) %>%
summarize_num_patients(
var = "USUBJID",
.stats = "unique",
.labels = "- Any Grade -",
.indent_mods = 6L
) %>%
count_occurrences_by_grade(
var = "ATOXGR",
grade_groups = grade_groups,
.indent_mods = 5L
) %>%
append_topleft(" Grade")
}
#' @describeIn aet04 Preprocessing
#'
#' @inheritParams gen_args
#' @returns the preprocessing function returns a `list` of `data.frame`.
#' @export
#'
aet04_pre <- function(adam_db, ...) {
atoxgr_lvls <- c("1", "2", "3", "4", "5")
adam_db$adae <- adam_db$adae %>%
filter(.data$ANL01FL == "Y") %>%
mutate(
AEBODSYS = with_label(reformat(.data$AEBODSYS, nocoding), "MedDRA System Organ Class"),
AEDECOD = with_label(reformat(.data$AEDECOD, nocoding), "MedDRA Preferred Term"),
ATOXGR = factor(.data$ATOXGR, levels = atoxgr_lvls)
)
adam_db
}
#' @describeIn aet04 Postprocessing
#'
#' @inheritParams gen_args
#' @returns the postprocessing function returns an `rtables` object or an `ElementaryTable` (null report).
#' @export
#'
aet04_post <- function(tlg, prune_0 = TRUE, ...) {
tlg <- tlg %>%
tlg_sort_by_vars(c("AEBODSYS", "AEDECOD"), score_all_sum, decreasing = TRUE)
if (prune_0) tlg <- trim_rows(tlg)
std_postprocessing(tlg)
}
#' `AET04` Table 1 (Default) Adverse Events by Highest `NCI` `CTACAE` `AE` Grade Table 1.
#'
#' The `AET04` table provides an
#' overview of adverse event with the highest `NCI` `CTCAE` grade per individual.
#'
#' @include chevron_tlg-S4class.R
#' @export
#'
#' @examples
#' grade_groups <- list(
#' "Grade 1-2" = c("1", "2"),
#' "Grade 3-4" = c("3", "4"),
#' "Grade 5" = c("5")
#' )
#' proc_data <- dunlin::log_filter(syn_data, AEBODSYS == "cl A.1", "adae")
#' run(aet04, proc_data, grade_groups = grade_groups)
aet04 <- chevron_t(
main = aet04_main,
preprocess = aet04_pre,
postprocess = aet04_post,
dataset = c("adsl", "adae")
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.