Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----eval=F-------------------------------------------------------------------
# install.packages("devtools")
# devtools::install_github("luizesser/chooseGCM")
## ----eval=F-------------------------------------------------------------------
# install.packages("chooseGCM")
## -----------------------------------------------------------------------------
library(chooseGCM)
tictoc::tic()
set.seed(1)
## ----eval=F-------------------------------------------------------------------
# worldclim_data(path = "input_data/WorldClim_data_gcms_all", period = "future", variable = "bioc", year = "2090", gcm = "all", ssp = "585", resolution = 10)
## -----------------------------------------------------------------------------
var_names <- c("bio_1", "bio_12")
s <- import_gcms(system.file("extdata", package = "chooseGCM"), var_names = var_names)
## -----------------------------------------------------------------------------
study_area <- terra::ext(c(-80, -30, -50, 10)) |> terra::vect(crs="epsg:4326")
## -----------------------------------------------------------------------------
res <- compare_gcms(s, var_names, study_area, k = 3)
res$statistics_gcms
## -----------------------------------------------------------------------------
# Summary of GCMs
s_sum <- summary_gcms(s, var_names, study_area)
s_sum
## -----------------------------------------------------------------------------
# Pearson Correlation between GCMs
s_cor <- cor_gcms(s, var_names, study_area, scale = TRUE, method = "pearson")
s_cor
## -----------------------------------------------------------------------------
# Euclidean Distance between GCMs
s_dist <- dist_gcms(s, var_names, study_area, method = "euclidean")
s_dist
## -----------------------------------------------------------------------------
kmeans_gcms(s, var_names, study_area, k = 3, method = "euclidean")
## -----------------------------------------------------------------------------
kmeans_gcms(s, var_names, study_area, k = 3)
## -----------------------------------------------------------------------------
hclust_gcms(s, var_names, study_area, k = 3)
## -----------------------------------------------------------------------------
hclust_gcms(s, var_names, study_area, k = 3, n = 1000)
## -----------------------------------------------------------------------------
optk_gcms(s, var_names, study_area, cluster = "kmeans", method = "wss", n = 1000)
## -----------------------------------------------------------------------------
optk_gcms(s, var_names, study_area, cluster = "kmeans", method = "silhouette", n = 1000)
## -----------------------------------------------------------------------------
optk_gcms(s, var_names, study_area, cluster = "kmeans", method = "gap_stat", n = 1000)
## -----------------------------------------------------------------------------
montecarlo_gcms(s, var_names, study_area, perm = 10000, dist_method = "euclidean", clustering_method = "kmeans")
## -----------------------------------------------------------------------------
montecarlo_gcms(s, var_names, study_area, perm = 10000, dist_method = "euclidean", clustering_method = "closestdist")
## -----------------------------------------------------------------------------
env_gcms(s, var_names, study_area, highlight = res$suggested_gcms$k3)
## -----------------------------------------------------------------------------
env_gcms(s, var_names, study_area, highlight = "sum")
## -----------------------------------------------------------------------------
closestdist_gcms(s, var_names, study_area)
## -----------------------------------------------------------------------------
closestdist_gcms(s, var_names, study_area, k=3)
## -----------------------------------------------------------------------------
tictoc::toc()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.