Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, echo = FALSE------------------------------------------------------
library(clarabel)
## -----------------------------------------------------------------------------
P <- Matrix::Matrix(2 * c(3, 0, 0, 2), nrow = 2, ncol = 2, sparse = TRUE)
P <- as(P, "symmetricMatrix") # P needs to be a symmetric matrix
q <- c(-1, -4)
A <- Matrix::Matrix(c(1, 1, 0, -1, 0, -2, 0, 1, 0, -1), ncol = 2, sparse = TRUE)
b <- c(0, 1, 1, 1, 1)
cones <- list(z = 1L, l = 4L) ## 1 equality and 4 inequalities, in order
s <- clarabel(A = A, b = b, q = q, P = P, cones = cones)
cat(sprintf("Solution status, description: = (%d, %s)\n",
s$status, solver_status_descriptions()[s$status]))
cat(sprintf("Solution: (x1, x2) = (%f, %f)\n", s$x[1], s$x[2]))
## -----------------------------------------------------------------------------
P <- Matrix::Matrix(2 * c(0, 0, 0, 1), nrow = 2, ncol = 2, sparse = TRUE)
P <- as(P, "symmetricMatrix") # P needs to be a symmetric matrix
q <- c(0, 0)
A <- Matrix::Matrix(c(0, -2.0, 0, 0, 0, 1.0), nrow = 3, ncol = 2, sparse = TRUE)
b <- c(1, -2, -2)
cones <- list(q = 3L)
s <- clarabel(A = A, b = b, q = q, P = P, cones = cones)
cat(sprintf("Solution status, description: = (%d, %s)\n",
s$status, solver_status_descriptions()[s$status]))
cat(sprintf("Solution (x1, x2) = (%f, %f)\n", s$x[1], s$x[2]))
## -----------------------------------------------------------------------------
#' Return an vectorization of symmetric matrix using the upper triangular part,
#' still in column order.
#' @param S a symmetric matrix
#' @return vector of values
vec <- function(S) {
n <- nrow(S)
sqrt2 <- sqrt(2.0)
upper_tri <- upper.tri(S, diag = FALSE)
S[upper_tri] <- S[upper_tri] * sqrt2
S[upper.tri(S, diag = TRUE)]
}
#' Return the symmetric matrix from the [vec] vectorization
#' @param v a vector
#' @return a symmetric matrix
mat <- function(v) {
n <- (sqrt(8 * length(v) + 1) - 1) / 2
sqrt2 <- sqrt(2.0)
S <- matrix(0, n, n)
upper_tri <- upper.tri(S, diag = TRUE)
S[upper_tri] <- v / sqrt2
S <- S + t(S)
diag(S) <- diag(S) / sqrt(2)
S
}
## ----echo = TRUE--------------------------------------------------------------
q <- c(1, -1, 1) # objective: x_1 - x2 + x_3
A11 <- matrix(c(-7, -11, -11, 3), nrow = 2)
A12 <- matrix(c(7, -18, -18, 8), nrow = 2)
A13 <- matrix(c(-2, -8, -8, 1), nrow = 2)
A21 <- matrix(c(-21, -11, 0, -11, 10, 8, 0, 8, 5), nrow = 3)
A22 <- matrix(c(0, 10, 16, 10, -10, -10, 16, -10, 3), nrow = 3)
A23 <- matrix(c(-5, 2, -17, 2, -6, 8, -17, 8, 6), nrow = 3)
B1 <- matrix(c(33, -9, -9, 26), nrow = 2)
B2 <- matrix(c(14, 9, 40, 9, 91, 10, 40, 10, 15), nrow = 3)
A <- rbind(
cbind(vec(A11), vec(A12), vec(A13)), # first psd constraint
cbind(vec(A21), vec(A22), vec(A23)) # second psd constraint
)
b <- c(vec(B1), vec(B2)) # stack both psd constraints
cones <- list(s = c(2, 3)) # cone dimensions
s <- clarabel(A = A, b = b, q = q, cones = cones)
cat(sprintf("Solution status, description: = (%d, %s)\n",
s$status, solver_status_descriptions()[s$status]))
cat(sprintf("Solution (x1, x2, x3) = (%f, %f, %f)\n", s$x[1], s$x[2], s$x[3]))
## ----echo = FALSE-------------------------------------------------------------
parameter_df <- data.frame(
Parameter = c("z", "l", "q", "s", "ep", "p", "gp"),
Type = c("integer", "integer", "integer", "integer", "integer", "numeric", "list"),
Length = c("1", "1", ">= 1", ">= 1", "1", ">= 1", ">= 1"),
Description = c(
"Number of primal zero cones (dual free cones), which corresponds to the primal equality constraints",
"Number of linear cones (non-negative cones)",
"Vector of second-order cone sizes",
"Vector of positive semidefinite cone sizes",
"Number of primal exponential cones",
"Vector of primal power cone parameters",
"List of named lists of two items, `a` : the numeric vector of at least 2 exponent terms, and `n` : an integer dimension of generalized power cone parameters"
),
Definition = c("$\\{ 0 \\}^{z}$",
"$\\{ x \\in \\mathbb{R}^{l} : x_i \\ge 0, \\forall i=1,\\dots,l \\}$",
"$\\{ (t,x) \\in \\mathbb{R}^{q} : \\lVert x\\rVert_2 \\leq t \\}$",
"Upper triangular part of the positive semidefinite cone $S^s_+$. The elements $x$ of this cone represent the columnwise stacking of the upper triangular part of a positive semidefinite matrix $X \\in S^s_+$, so that $x \\in R^d$ with $d = s(s+1)/2$",
"$\\{(x, y, z) : y > 0,~~ ye^{x/y} \\le z \\}$",
"$\\{(x, y, z) : x^p y^{(1-p)} \\ge \\lVert z\\rVert,~ (x,y) \\ge 0 \\}$ with $p \\in (0,1)$",
"$\\{(x, y) \\in R^{len(a)} \\times R^n : \\prod\\limits_{a_i \\in a} x_i^{a_i} \\ge \\lVert y\\rVert_2,~ x \\ge 0 \\}$ with $a_i \\in (0,1)$ and $\\sum a_i = 1$"
)
)
names(parameter_df)[5] <- "Definition (per parameter element)"
knitr::kable(parameter_df)
## -----------------------------------------------------------------------------
P <- Matrix::Matrix(2 * c(0, 0, 0, 1), nrow = 2, ncol = 2, sparse = TRUE)
P <- as(P, "symmetricMatrix") # P needs to be a symmetric matrix
q <- c(0, 0)
A <- Matrix::Matrix(c(0, -2.0, 0, 0, 0, 1.0), nrow = 3, ncol = 2, sparse = TRUE)
b <- c(1, -2, -2)
cones <- list(q = 3L)
s <- clarabel(A = A, b = b, q = q, P = P, cones = cones,
control = list(max_iter = 3)) ## Reduced number of iterations
cat(sprintf("Solution status, description: = (%d, %s)\n",
s$status, solver_status_descriptions()[s$status]))
cat(sprintf("Solution (x1, x2) = (%f, %f)\n", s$x[1], s$x[2]))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.