Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
warning = FALSE,
fig.width = 6.5,
fig.height = 2.75
)
## -----------------------------------------------------------------------------
## library("Zelig")
library("clarify")
set.seed(100)
## -----------------------------------------------------------------------------
data("lalonde", package = "MatchIt")
## ----eval = FALSE-------------------------------------------------------------
# fit <- zelig(re78 ~ treat + age + educ + married + race +
# nodegree + re74 + re75, data = lalonde,
# model = "ls", cite = FALSE)
## ----eval = FALSE-------------------------------------------------------------
# fit <- setx(fit, treat = 0)
# fit <- setx1(fit, treat = 1)
## ----eval = FALSE-------------------------------------------------------------
# fit <- Zelig::sim(fit)
## ----eval = FALSE-------------------------------------------------------------
# fit
## ----eval = F-----------------------------------------------------------------
# plot(fit)
## -----------------------------------------------------------------------------
fit <- lm(re78 ~ treat + age + educ + married + race +
nodegree + re74 + re75, data = lalonde)
## -----------------------------------------------------------------------------
s <- clarify::sim(fit)
## -----------------------------------------------------------------------------
est <- sim_setx(s, x = list(treat = 0), x1 = list(treat = 1),
verbose = FALSE)
## -----------------------------------------------------------------------------
summary(est)
plot(est)
## -----------------------------------------------------------------------------
data("lalonde", package = "MatchIt")
#Rare outcome: 1978 earnings over $20k; ~6% prevalence
lalonde$re78_20k <- lalonde$re78 >= 20000
## ----eval = FALSE-------------------------------------------------------------
# fit <- zelig(re78_20k ~ treat + age + educ + married + race +
# nodegree + re74 + re75, data = lalonde,
# model = "relogit", cite = FALSE)
#
# fit
## ----eval = FALSE-------------------------------------------------------------
# fit <- setx(fit, treat = 0)
# fit <- setx1(fit, treat = 1)
#
# fit <- Zelig::sim(fit)
#
# fit
## ----eval = FALSE-------------------------------------------------------------
# plot(fit)
## -----------------------------------------------------------------------------
fit <- logistf::logistf(re78_20k ~ treat + age + educ + married + race +
nodegree + re74 + re75, data = lalonde,
flic = TRUE)
summary(fit)
## -----------------------------------------------------------------------------
s <- clarify::sim(fit)
est <- sim_setx(s, x = list(treat = 0), x1 = list(treat = 1),
verbose = FALSE)
summary(est)
## -----------------------------------------------------------------------------
plot(est)
## -----------------------------------------------------------------------------
data("lalonde", package = "MatchIt")
m.out <- MatchIt::matchit(treat ~ age + educ + married + race +
nodegree + re74 + re75, data = lalonde,
method = "nearest")
## ----eval = FALSE-------------------------------------------------------------
# fit <- zelig(re78 ~ treat * (age + educ + married + race +
# nodegree + re74 + re75),
# data = m.out, model = "ls", cite = FALSE)
## ----eval = FALSE-------------------------------------------------------------
# fit <- ATT(fit, "treat")
## ----eval = F-----------------------------------------------------------------
# fit
## ----eval = F-----------------------------------------------------------------
# plot(fit)
## -----------------------------------------------------------------------------
m.data <- MatchIt::match.data(m.out)
fit <- lm(re78 ~ treat * (age + educ + married + race +
nodegree + re74 + re75),
data = m.data)
## -----------------------------------------------------------------------------
s <- clarify::sim(fit, vcov = ~subclass)
## -----------------------------------------------------------------------------
est <- sim_ame(s, var = "treat", subset = treat == 1,
contrast = "diff", verbose = FALSE)
## -----------------------------------------------------------------------------
summary(est)
plot(est)
## ----message=F----------------------------------------------------------------
library(Amelia)
data("africa", package = "Amelia")
## -----------------------------------------------------------------------------
# Multiple imputation
a.out <- amelia(x = africa, m = 10, cs = "country",
ts = "year", logs = "gdp_pc", p2s = 0)
## ----eval = FALSE-------------------------------------------------------------
# fit <- zelig(gdp_pc ~ infl * trade, data = a.out,
# model = "ls", cite = FALSE)
## ----eval = FALSE-------------------------------------------------------------
# summary(fit)
## ----eval = FALSE-------------------------------------------------------------
# fit <- setx(fit, infl = 0, trade = 40)
# fit <- setx1(fit, infl = 0, trade = 60)
#
# fit <- Zelig::sim(fit)
## ----eval = F-----------------------------------------------------------------
# fit
## ----eval = F-----------------------------------------------------------------
# plot(fit)
## -----------------------------------------------------------------------------
#Use Amelia functions to model and combine coefficients
fits <- with(a.out, lm(gdp_pc ~ infl * trade))
mi.combine(fits)
## -----------------------------------------------------------------------------
#Simulate coefficients, 100 in each of 10 imputations
s <- misim(fits, n = 100)
#Compute predictions at specified values
est <- sim_setx(s, x = list(infl = 0, trade = 40),
x1 = list(infl = 0, trade = 60),
verbose = FALSE)
summary(est)
plot(est)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.